• Ayesha Siddika University of New South Wales, Sydney, School of Civil and Environmental Engineering, NSW 2052, Australia; Pabna University of Science and Technology, Department of Civil Engineering, Pabna-6600, Bangladesh
  • Md. Ruhul Amin Pabna University of Science and Technology, Department of Civil Engineering, Pabna-6600, Bangladesh
  • Md. Abu Rayhan Pabna University of Science and Technology, Department of Civil Engineering, Pabna-6600, Bangladesh
  • Md. Saidul Islam Pabna University of Science and Technology, Department of Civil Engineering, Pabna-6600, Bangladesh
  • Md. Abdullah Al Mamun Rajshahi University of Engineering & Technology, Department of Civil Engineering, Rajshahi-6204, Bangladesh
  • Rayed Alyousef Prince Sattam Bin Abdulaziz University, College of Engineering, Department of Civil Engineering, 11942 Alkharj, Saudi Arabia
  • Y. H. Mugahed Amran Prince Sattam Bin Abdulaziz University, College of Engineering, Department of Civil Engineering, 11942 Alkharj, Saudi Arabia



Fly ash, rice husk ash, stone dust, sustainable green concrete, mechanical properties


The performance of a sustainable green concrete with fly ash (FA), rice husk ash (RHA), and stone dust (SD) as a partial replacement of cement and sand was experimentally explored. FA and RHA have a high silica content, are highly pozzolanic in nature and have a high surface area without any treatment. These by-products show filler effects, which enhance concrete’s density. Results showed that the FA and RHA materials have good hydration behaviour and effectively develop strength at an early age of concrete. SD acts as a stress transferring medium within concrete, thereby allowing the concrete to be stronger in compression, and bending. Consequently, water absorption capacity of the sustainable concrete was lower than that of the ordinary one. However, a little reduction in strength was observed after the replacement of the binder and aggregate using the FA, RHA and SD, but the reduction was insignificant. The reinforced structure with sustainable concrete containing the FA, RHA, and SD generally fails in concrete crushing tests initiated by flexural cracking followed by shear cracks. The sustainable concrete could be categorized as a perfect material with no significant conciliation in strength properties and can be applied to design under-reinforced elements for a low-to-moderate service load.


I. Taji, S. Ghorbani, J. De Brito, et al. Application of statistical analysis to evaluate the corrosion resistance of steel rebars embedded in concrete with marble and granite waste dust. Journal of Cleaner Production 210:837 – 846, 2019. doi:10.1016/j.jclepro.2018.11.091.

J. Alex, J. Dhanalakshmi, B. Ambedkar. Experimental investigation on rice husk ash as cement replacement on concrete production. Construction and Building Materials 127:353 – 362, 2016. doi:10.1016/j.conbuildmat.2016.09.150.

A. K. Saha. Effect of class F fly ash on the durability properties of concrete. Sustainable environment research 28(1):25 – 31, 2018. doi:10.1016/j.serj.2017.09.001.

A. Siddika, M. A. Al Mamun, R. Alyousef, H. Mohammadhosseini. State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete. Journal of King Saud University - Engineering Sciences 2020. doi:10.1016/j.serj.2017.09.001.

B. Bahoria, D. Parbat, P. Nagarnaik. XRD analysis of natural sand, quarry dust, waste plastic (ldpe) to be used as a fine aggregate in concrete. Materials Today: Proceedings 5(1):1432 – 1438, 2018. doi:10.1016/j.matpr.2017.11.230.

M. R. Hasan, A. Siddika, M. P. A. Akanda, M. R. Islam. Effects of waste glass addition on the physical and mechanical properties of brick. Innovative Infrastructure Solutions 6(36):1 – 13, 2021. doi:10.1007/s41062-020-00401-z.

A. Siddika, M. A. Al Mamun, M. H. Ali. Study on concrete with rice husk ash. Innovative Infrastructure Solutions 3(18):1 – 9, 2018. doi:10.1007/s41062-018-0127-6.

S. Ghorbani, I. Taji, M. Tavakkolizadeh, et al. Improving corrosion resistance of steel rebars in concrete with marble and granite waste dust as partial cement replacement. Construction and Building Materials 185:110 – 119, 2018. doi:10.1016/j.conbuildmat.2018.07.066.

A. Siddika, M. A. Al Mamun, R. Alyousef, et al. Properties and utilizations of waste tire rubber in concrete: A review. Construction and Building Materials 224:711 – 731, 2019. doi:10.1016/j.conbuildmat.2019.07.108.

A. Hajimohammadi, T. Ngo, A. Kashani. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. Journal of Cleaner Production 193:593 – 603, 2018. doi:10.1016/j.jclepro.2018.05.086.

H. Mohammadhosseini, M. M. Tahir. Production of sustainable green concrete composites comprising industrial waste carpet fibres. In Green Composites, pp. 25–52. Springer, 2019.

R. Alyousef, H. Alabduljabbar, H. Mohammadhosseini, et al. Utilization of sheep wool as potential fibrous materials in the production of concrete composites. Journal of Building Engineering 30:101216, 2020. doi:10.1016/j.jobe.2020.101216.

R. Alyousef, K. Aldossari, O. Ibrahim, et al. Effect of sheep wool fiber on fresh and hardened properties of fiber reinforced concrete. International Journal of Civil Engineering and Technology 10:190 – 199, 2019.

Y. Mugahed Amran, R. Alyousef, H. Alabduljabbar, et al. Performance properties of structural fibred-foamed concrete. Results in Engineering 5:100092, 2020. doi:10.1016/j.rineng.2019.100092.

H. Assaedi, T. Alomayri, A. Siddika, et al. Effect of nanosilica on mechanical properties and microstructure of PVA fiber-reinforced geopolymer composite (PVA-FRGC). Materials 12(21):3624, 2019. doi:10.3390/ma12213624.

A. Siddika, M. A. Al Mamun, W. Ferdous, et al. 3D-printed concrete: applications, performance, and challenges. Journal of Sustainable Cement-Based Materials 9(3):127 – 164, 2020. doi:10.1080/21650373.2019.1705199.

R. Prakash, R. Thenmozhi, S. N. Raman, et al. Mechanical characterisation of sustainable fibre-reinforced lightweight concrete incorporating waste coconut shell as coarse aggregate and sisal fibre. International Journal of Environmental Science and Technology pp. 1 – 12, 2020. doi:10.1007/s13762-020-02900-z.

A. K. Saha, P. K. Sarker, V. Golovanevskiy. Thermal properties and residual strength after high temperature exposure of cement mortar using ferronickel slag aggregate. Construction and Building Materials 199:601 – 612, 2019. doi:10.1016/j.conbuildmat.2018.12.068.

R. Prakash, R. Thenmozhi, S. N. Raman, C. Subramanian. Characterization of eco-friendly steel fiber-reinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement. Structural Concrete 21:437 – 447, 2019. doi:10.1002/suco.201800355.

F. Moghaddam, V. Sirivivatnanon, K. Vessalas. The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes. Case Studies in Construction Materials 10:e00218, 2019. doi:10.1016/j.cscm.2019.e00218.

P. Chindaprasirt, C. Jaturapitakkul, T. Sinsiri. Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cement and Concrete Composites 27(4):425 – 428, 2005. doi:10.1016/j.cemconcomp.2004.07.003.

P. Chindaprasirt, S. Rukzon, V. Sirivivatnanon. Resistance to chloride penetration of blended portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Construction and Building Materials 22(5):932 – 938, 2008. doi:10.1016/j.conbuildmat.2006.12.001.

G. L. Golewski, T. Sadowski. A study of mode III fracture toughness in young and mature concrete with fly ash additive. In Advanced Materials and Structures VI, vol. 254 of Solid State Phenomena, pp. 120 – 125. 2016. doi:10.4028/

R. Prakash, R. Thenmozhi, S. N. Raman, et al. An investigation of key mechanical and durability properties of coconut shell concrete with partial replacement of fly ash. Structural Concrete pp. 1 – 12. doi:10.1002/suco.201900162.

V. N. Kanthe, S. V. Deo, M. Murmu. Effect of fly ash and rice husk ash on strength and durability of binary and ternary blend cement mortar. Asian Journal of Civil Engineering 19:963 – 970, 2018. doi:10.1007/s42107-018-0076-6.

M. A. Mamun, M. S. Islam. Experimental investigation of chloride ion penetration and reinforcement corrosion in reinforced concrete member. Journal of Construction Engineering and Project Management 7:26 – 29, 2017. doi:10.6106/JCEPM.2017.3.30.026.

G. L. Golewski. Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems. Construction and Building Materials 213:142 – 155, 2019. doi:10.1016/j.conbuildmat.2019.04.071.

S. Pavía, R. Walker, P. Veale, A. Wood. Impact of the properties and reactivity of rice husk ash on lime mortar properties. Journal of Materials in Civil Engineering 26(9):04014066, 2014. doi:10.1061/(ASCE)MT.1943-5533.0000967.

S. N. Raman, T. Ngo, P. Mendis, H. B. Mahmud. High-strength rice husk ash concrete incorporating quarry dust as a partial substitute for sand. Construction and Building Materials 25(7):3123 – 3130, 2011. doi:10.1016/j.conbuildmat.2010.12.026.

S.-H. Jung, S. Velu, K. Subbiah, et al. Microstructure characteristics of fly ash concrete with rice husk ash and lime stone powder 12(17):1 – 9, 2018.

C. Fapohunda, B. Akinbile, A. Shittu. Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary portland cement. International Journal of Sustainable Built Environment 6(2):675 – 692, 2017. doi:10.1016/j.ijsbe.2017.07.004.

C. L. Hwang, S. Chandra. 4 - the use of rice husk ash in concrete. In Waste Materials Used in Concrete Manufacturing, pp. 184 – 234. William Andrew Publishing. doi:10.1016/b978-081551393-3.50007-7.

D. G. Nair, K. S. Jagadish, A. Fraaij. Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing. Cement and Concrete Research 36(6):1062 – 1071, 2006. doi:10.1016/j.cemconres.2006.03.012.

K. C. Panda, S. D. Prusty. Influence of silpozz and rice husk ash on enhancement of concrete strength. Advances in concrete construction 3(3):203 – 221, 2015. doi:10.12989/acc.2015.3.3.203.

G. Cordeiro, R. Toledo Filho, E. Fairbairn. Use of ultrafine rice husk ash with high-carbon content as pozzolan in high performance concrete. Materials and Structures 42(7):983 – 992, 2008. doi:10.1617/s11527-008-9437-z.

C. Elakkiah. Rice Husk Ash (RHA) - The Future of Concrete. In Lecture Notes in Civil Engineering. Springer, Singapore, 2019. doi:10.1007/978-981-13-3317-0_39.

A. Abalaka. Strength and some durability properties of concrete containing rice husk ash produced in a charcoal incinerator at low specific surface. International Journal of Concrete Structures and Materials 7(4):287 – 293, 2013. doi:10.1007/s40069-013-0058-8.

G. L. Golewski. Energy savings associated with the use of fly ash and nanoadditives in the cement composition. Energies 13(9):2184, 2020.

G. Golewski. A novel specific requirements for materials used in reinforced concrete composites subjected to dynamic loads. Composite Structures 223:110939, 2019. doi:10.1016/j.compstruct.2019.110939.

S. Singh, R. Nagar, V. Agrawal. A review on properties of sustainable concrete using granite dust as replacement for river sand. Journal of Cleaner Production 126:74 – 87, 2016. doi:10.1016/j.jclepro.2016.03.114.

B. K. Meisuh, C. K. Kankam, T. K. Buabin. Effect of quarry rock dust on the flexural strength of concrete. Case Studies in Construction Materials 8:16 – 22, 2018. doi:10.1016/j.cscm.2017.12.002.

M.-C. Han, D. Han, J.-K. Shin. Use of bottom ash and stone dust to make lightweight aggregate. Construction and Building Materials 99:192 – 199, 2015. doi:10.1016/j.conbuildmat.2015.09.036.

H. Li, F. Huang, G. Cheng, et al. Effect of granite dust on mechanical and some durability properties of manufactured sand concrete. Construction and Building Materials 109:41 – 46, 2016. doi:10.1016/j.conbuildmat.2016.01.034.

S. Mundra, P. Sindhi, V. Chandwani, et al. Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix. Perspectives in Science 8:345 – 347, 2016. Recent Trends in Engineering and Material Sciences, doi:10.1016/j.pisc.2016.04.070.

ASTM C618-03 - Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Standard, American Society for Testing and Materials, West Conshohocken, 2003. doi:10.1520/C0618-03.

B. Hellack. Specific surface area by Brunauer-Emmett- Teller (BET) theory. Tech. rep. www.nanopartikel. info/wp-content/uploads/2020/11/nanOxiMet_SOP_ Specific-surface-area-analysis-by-BET-theory_ V1.pdf.

ASTM C33-03 - Standard specification for concrete aggregates. Standard, American Society for Testing and Materials, West Conshohocken, 2003. doi:10.1520/C0033-03.

ASTM C143/C143-03 - Standard test method for slump of hydraulic-cement concrete. Standard, American Society for Testing and Materials, West Conshohocken, 2003. doi:10.1520/C0143_C0143M-03.

ASTM C642-06 - Standard test method for density, absorption, and voids in hardened concrete. Standard, American Society for Testing and Materials, West Conshohocken, 2006. doi:10.1520/C0642-06.

ASTM C39/C39M-18 - Standard test method for compressive strength of cylindrical concrete specimens. Standard, American Society for Testing and Materials, West Conshohocken, 2018. doi:10.1520/C0039_C0039M-18.

ASTM C78/C78M-18 - Standard test method for flexural strength of concrete (using simple beam with third-point loading). Standard, American Society for Testing and Materials, West Conshohocken, 2018. doi:10.1520/C0039_C0039M-18.

ASTM C 496/C496M-11 - Standard test method for splitting tensile strength of cylindrical concrete specimens. Standard, American Society for Testing and Materials, West Conshohocken, 2011. doi:10.1520/C0496_C0496M-11.

Z. Yao, X. Ji, P. Sarker, et al. A comprehensive review on the applications of coal fly ash. Earth-Science Reviews 141:105 – 121, 2015. doi:10.1016/j.earscirev.2014.11.016.

R. Prakash, R. Thenmozhi, S. N. Raman. Mechanical characterisation and flexural performance of eco-friendly concrete produced with fly ash as cement replacement and coconut shell coarse aggregate. International Journal of Environment and Sustainable Development 18(2):131 – 148, 2019. doi:10.1504/IJESD.2019.099491.

S. K. Antiohos, J. G. Tapali, M. Zervaki, et al. Low embodied energy cement containing untreated RHA: A strength development and durability study. Construction and Building Materials 49:455 – 463, 2013. doi:10.1016/j.conbuildmat.2013.08.046.

A. Rana, P. Kalla, H. K. Verma, J. K. Mohnot. Recycling of dimensional stone waste in concrete: A review. Journal of cleaner production 135:312 – 331, 2016. doi:10.1016/j.jclepro.2016.06.126.

S. Ghorbani, I. Taji, J. De Brito, et al. Mechanical and durability behaviour of concrete with granite waste dust as partial cement replacement under adverse exposure conditions. Construction and Building Materials 194:143 – 152, 2019. doi:10.1016/j.conbuildmat.2018.11.023.

G. Sivakumar, R. Ravibaskar. Investigation on the hydration properties of the rice husk ash cement using FTIR and SEM. Applied Physics Research 1(2):71 – 77, 2009. doi:10.5539/apr.v1n2p71.

B. S. Thomas. Green concrete partially comprised of rice husk ash as a supplementary cementitious material - A comprehensive review. Renewable and Sustainable Energy Reviews 82:3913 – 3923, 2018. doi:10.1016/J.RSER.2017.10.081.

IS 456:2000. Concrete, Plain and Reinforced. Bur Indian Stand Dehli. Standard, 2000.

Reinforced concrete design: in accordance with AS 3600-2009. Standard, Standards Australia, 2011.

Strength, R. H. A. Durability Properties of Quaternary Cement Concrete Made with Fly Ash, L. Powder. P. kathirvel and v. saraswathy and s. p. karthik and a. s. s. sekar. Arabian Journal for Science and Engineering 38:589 – 598, 2013. doi:10.1007/s13369-012-0331-1.

P. A. Adesina, F. A. Olutoge. Structural properties of sustainable concrete developed using rice husk ash and hydrated lime. Journal of Building Engineering 25:100804, 2019. doi:10.1016/j.jobe.2019.100804.

R. Zerbino, G. Giaccio, G. C. Isaia. Concrete incorporating rice-husk ash without processing. Construction and building materials 25(1):371 – 378, 2011. doi:10.1016/j.conbuildmat.2010.06.016.