EVALUATION OF REFLECTANCE FOR BUILDING MATERIALS CLASSIFICATION WITH TERRESTRIAL LASER SCANNER RADIATION
DOI:
https://doi.org/10.14311/AP.2021.61.0174Keywords:
TLS, reflectance, materials, classification, crystallinityAbstract
The main purpose of this work is the evaluation of the potential of Terrestrial Laser Scanning (TLS) technology to perform a reflectance analysis of scanned objects. A laser beam, having a coherent beam in the field of visible light (wavelength between 532nm and 680 nm), can lead to optical diffraction phenomena that allow a correlation between the degree of crystallinity of solids (in particular dispersed crystalline materials) and its reflectivity. Different materials with known crystallinity values have been examined and the diffraction value has been analysed for two types of lasers, one pulsed and the other phase measurement, with two different acquisition conditions (nadiral and oblique position). The results demonstrated the correlation by verifying that the incident laser light beam is more refracted by materials with a higher degree of crystallinity than less crystalline or amorphous materials.
Downloads
References
J. Shan, C. K. Toth. Topographic laser ranging and scanning: principles and processing. CRC press, 2018.
M. Pepe, D. Costantino, A. Restuccia Garofalo. An efficient pipeline to obtain 3D model for HBIM and structural analysis purposes from 3D point clouds. Applied Sciences 10(4):1235, 2020. doi:10.3390/app10041235.
R. I. Hartley, A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2nd edn., 2004.
S. Soudarissanane, R. Lindenbergh, M. Menenti, P. Teunissen. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS journal of photogrammetry and remote sensing 66(4):389 – 399, 2011. doi:10.1016/j.isprsjprs.2011.01.005.
K. Määttä, J. Kostamovaara, R. Myllylä. Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques. Applied Optics 32(27):5334 – 5347, 1993. doi:10.1364/AO.32.005334.
F. de Asís López, C. Ordóñez, J. Roca-Pardiñas, S. García-Cortés. Point cloud comparison under uncertainty. Application to beam bridge measurement with terrestrial laser scanning. Measurement 51:259 – 264, 2014. doi:10.1016/j.measurement.2014.02.013.
K. Van Balen, E. Verstrynge. Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls: Proceedings of the 10th International Conference on Structural Analysis of Historical Constructions (SAHC, Leuven, Belgium, 13-15 September 2016). CRC Press, 2016.
N. Pfeifer, C. Briese. Geometrical aspects of airborne laser scanning and terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(3/W52):311 – 319, 2007.
F. Coren, P. Sterzai. Radiometric correction in laser scanning. International Journal of Remote Sensing 27(15):3097 – 3104, 2006. doi:10.1080/01431160500217277.
D. Akca. Matching of 3D surfaces and their intensities. ISPRS Journal of Photogrammetry and Remote Sensing 62(2):112 – 121, 2007. doi:10.1016/j.isprsjprs.2006.06.001.
M. Bureš, S. Martirosov, J. Polcar. A novel projection algorithm for production layout extraction from point clouds. Acta Polytechnica 59(3):203 – 210, 2019. doi:10.14311/AP.2019.59.0203.
T. Aschoff, M. Thies, H. Spiecker. Describing forest stands using terrestrial laser-scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35(5):237 – 241, 2004.
N. J. Rosser, S. A. Dunning, D. N. Petley. Multi-spectral terrestrial laser scanning for interpreting the controls on and changes to unstable rock faces 9:07021, 2007.
N. Pfeifer, B. Höfle, C. Briese, et al. Analysis of the backscattered energy in terrestrial laser scanning data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37:1045 – 1052, 2008.
D. D. Lichti, B. R. Harvey. The effects of reflecting surface material properties on time-of-flight laser scanner measurements. In Proceedings of the Symposium on Geospatial Theory, Processing and Applications, pp. 1 – 9. Ottawa, Canada, 2002.
A. Masiero, D. Costantino. TLS for detecting small damages on a building façade. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W11:831 – 836, 2019. doi:10.5194/isprs-archives-XLII-2-W11-831-2019.
K. H. Thiel, A. Wehr. Performance capabilities of laser-scanners-an overview and measurement principle analysis. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(8):14 – 18, 2004.
W. Boehler, M. B. Vicent, A. Marbs. Investigating laser scanner accuracy. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34(5):696 – 701, 2003.
T. Kersten, K. Mechelke, M. Lindstaedt, H. Sternberg. Geometric accuracy investigations of the latest terrestrial laser scanning systems. In Proceedings of the FIG Working Week, Integrating the Generations, TS 5G - Calibration of Instruments, pp. 1 – 16. Stockholm, Sweden, 2008.
A. Kukko, S. Kaasalainen, P. Litkey. Effect of incidence angle on laser scanner intensity and surface data. Applied optics 47(7):986 – 992, 2008. doi:10.1364/AO.47.000986.
N. Pfeifer, P. Dorninger, A. Haring, H. Fan. Investigating terrestrial laser scanning intensity data: quality and functional relations. In Proceedings of the 8th International Conference on Optical 3-D Measurement Techniques, pp. 328 – 337. Zurich, Sweitzerland, 2007.
J. U. H. Eitel, L. A. Vierling, D. S. Long. Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner. Remote sensing of Environment 114(10):2229 – 2237, 2010. doi:10.1016/j.rse.2010.04.025.
S. Kaasalainen, A. Krooks, A. Kukko, H. Kaartinen. Radiometric calibration of terrestrial laser scanners with external reference targets. Remote Sensing 1(3):144 – 158, 2009. doi:10.3390/rs1030144.
M. A. Balduzzi, D. Van der Zande, J. Stuckens, et al. The properties of terrestrial laser system intensity for measuring leaf geometries: a case study with conference pear trees (Pyrus Communis). Sensors 11(2):1657 – 1681, 2011. doi:10.3390/s110201657.
S. Soudarissanane, R. Lindenbergh, M. Menenti, P. J. G. Teunissen. Incidence angle influence on the quality of terrestrial laser scanning points. In Proceedings of ISPRS Workshop Laserscanning 2009, vol. 38, pp. 183 – 188. Paris, France, 2009.
D. Costantino, M. G. Angelini. Qualitative and quantitative evaluation of the luminance of laser scanner radiation for the classification of materials. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Strasbourg, France XL-5/W2:207 – 212.
M. P. Groover. Fundamentals of modern manufacturing: Materials processes, and systems. John Wiley & Sons, 2007.
S. Kaasalainen, A. Jaakkola, M. Kaasalainen, et al. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods. Remote Sensing 3(10):2207 – 2221, 2011. doi:10.3390/rs3102207.
T. Voegtle, S. Wakaluk. Effects on the measurements of the terrestrial laser scanner HDS 6000 (Leica) caused by different object materials. vol. 38, pp. 68 – 74. Paris, France, 2009.
D. Costantino, M. G. Angelini, G. Caprino. Rapid approach of integrated survey for the conservative analysis of pictures. In XXI International CIPA Symposium, pp. 1 – 6. Athens, Greece, 2007.
F. Logiurato, L. M. Gratton, S. Oss. Un semplice dispositivo per la visualizzazione tridimensionale del comportamento della luce. Giornale Di Fisica 47(4):301 – 309, 2006. doi:10.1393/gdf/i2006-10014-6.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Domenica Costantino, Massimiliano Pepe, Maria Giuseppa Angelini
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Accepted 2020-12-09
Published 2021-03-01