3-D noncommutative phase-space, Pauli equation, deformed continuity equation, current magnetization, semi-classical partition function, magnetic susceptibilit


In this paper, we obtained the three-dimensional Pauli equation for a spin-1/2 particle in the presence of an electromagnetic field in a noncommutative phase-space as well as the corresponding deformed continuity equation, where the cases of a constant and non-constant magnetic fields are considered. Due to the absence of the current magnetization term in the deformed continuity equation as expected, we had to extract it from the noncommutative Pauli equation itself without modifying the continuity equation. It is shown that the non-constant magnetic field lifts the order of the noncommutativity parameter in both the Pauli equation and the corresponding continuity equation. However, we successfully examined the effect of the noncommutativity on the current density and the magnetization current. By using a classical treatment, we derived the semi-classical noncommutative partition function of the three-dimensional Pauli system of the one-particle and N-particle systems. Then, we employed it for calculating the corresponding Helmholtz free energy followed by the magnetization and the magnetic susceptibility of electrons in both commutative and noncommutative phase-spaces. Knowing that with both the three-dimensional Bopp-Shift transformation and the Moyal-Weyl product, we introduced the phase-space noncommutativity in the problems in question.


W. Greiner. Quantum Mechanics: An Introduction. Springer, Berlin, 4th edn., 2001.

E. Ikenberry. Quantum Mechanics for Mathematicians and Physicists. Oxford, New York, 1st edn., 1962.

A. Galindo, C. Sanchez del Rio. Intrinsic magnetic moment as a nonrelativistic phenomenon. American Journal of Physics 29(9):582 – 584, 1961. doi:10.1119/1.1937856.

M. Nowakowski. The quantum mechanical current of the Pauli equation. American Journal of Physics 67(10):916 – 919, 1999. doi:10.1119/1.19149.

G. W. Parker. Spin current density and the hyperfine interaction in hydrogen. American Journal of Physics 52(1):36 – 39, 1984. doi:10.1119/1.13846.

M. S. Shikakhwa, S. Turgut, N. K. Pak. Derivation of the magnetization current from the non-relativistic Pauli equation: A comment on “The quantum mechanical current of the Pauli equation” by Marek Nowakowski. American Journal of Physics 79(11):1177 – 1179, 2011. doi:10.1119/1.3630931.

W. B. Hodge, S. V. Migirditch, W. C. Kerr. Electron spin and probability current density in quantum mechanics. American Journal of Physics 82(7):681 – 690, 2014. doi:10.1119/1.4868094.

J. J. Sakurai. Advanced Quantum Mechanics. Reading, Mass.: Addison-Wesley Pub. Co., 1967.

I. Haouam, L. Chetouani. The Foldy-Wouthuysen transformation of the Dirac equation in noncommutative Phase-Space. Journal of Modern Physics 9(11):2021 – 2034, 2018. doi:10.4236/jmp.2018.911127.

I. Haouam. The phase-space noncommutativity effect on the large and small wavefunction components approach at Dirac equation. Open Access Library Journal 5:e4108, 2018. doi:10.4236/oalib.1104108.

J. D. Bjorken, S. Drell. Relativistic Quantum Mechanics. McGraw-Hill, New York, 1964.

L. L. Foldy, S. A. Wouthuysen. On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Physical Review 78(1):29 – 36, 1950. doi:10.1103/PhysRev.78.29.

W. Pauli. Zur quantenmechanik des magnetischen elektrons. Zeitschrift für Physik 43:601 – 623, 1927. doi:10.1103/PhysRev.78.29.

G. S, G. E. Uhlenbeck. Opmerking over de Spectra van Waterstof en Helium. Physica 5:266 – 270, 1925.

G. E. Uhlenbeck, S. Goudsmit. Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons. Die Naturwissenschaften 13(47).

P. A. M. Dirac, R. H. Fowler. The quantum theory of the electron. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character 117(778):610 – 624, 1928. doi:10.1098/rspa.1928.0023.

A. Connes. Non-commutative differential geometry. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 62(1):41 – 144, 1985. doi:10.1007/BF02698807.

S. L. Woronowicz. Twisted SU (2) group. An example of a non-commutative differential calculus. Publications of the Research Institute for Mathematical Sciences 23(1):117 – 181, 1987. doi:10.2977/prims/1195176848.

A. Connes, M. R. Douglas, A. Schwarz. Noncommutative geometry and matrix theory. Journal of High Energy Physics 1998(JHEP02):003, 1998. doi:10.1088/1126-6708/1998/02/003.

M. M. Sheikh-Jabbari. C, P, and T invariance of noncommutative gauge theories. Physical Review Letters 84(23):5265 – 5268, 2000. doi:10.1103/PhysRevLett.84.5265.

O. Bertolami, J. G. Rosa, C. M. L. de Aragão, et al. Noncommutative gravitational quantum well. Physical Review D 72(2):025010, 2005. doi:10.1103/PhysRevD.72.025010.

A. Das, H. Falomir, J. Gamboa, F. Méndez. Non-commutative supersymmetric quantum mechanics. Physics Letters B 670(4-5):407 – 415, 2009. doi:10.1016/j.physletb.2008.11.011.

J. M. Gracia-Bondia. Notes on “quantum gravity” and noncommutative geometry. In New Paths Towards Quantum Gravity, pp. 3 – 58. Springer, 2010. doi:10.1007/978-3-642-11897-5_1.

P. Martinetti. Beyond the standard model with noncommutative geometry, strolling towards quantum gravity. vol. 634, p. 012001. IOP Publishing, 2015. doi:10.1088/1742-6596/634/1/012001.

N. Seiberg, E. Witten. String theory and noncommutative geometry. Journal of High Energy Physics 1999(JHEP09), 1999. doi:10.1088/1126-6708/1999/09/032.

K. Christian. Quantum groups. Graduate texts in mathematics 155. Springer-Verlag, New York, 1995.

A. Connes, D. Kreimer. Renormalization in quantum field theory and the Riemann-Hilbert problem I: the Hopf algebra structure of graphs and the main theorem. Communications in Mathematical Physics 210(1):249 – 273, 2000. doi:10.1007/s002200050779.

A. Connes, D. Kreimer. Renormalization in quantum field theory and the Riemann-Hilbert problem II: The β-function, diffeomorphisms and the renormalization group. Communications in Mathematical Physics 216(1):215 – 241, 2001. doi:10.1007/PL00005547.

A. Tanasa, F. Vignes-Tourneret. Hopf algebra of non-commutative field theory. Journal of Noncommutative Geometry 2(1), 2008.

S. M. Carroll, J. A. Harvey, V. A. Kostelecký, et al. Noncommutative field theory and Lorentz violation. Physical Review Letters 87(14):141601, 2001. doi:10.1103/PhysRevLett.87.141601.

R. J. Szabo. Quantum field theory on noncommutative spaces. Physics Reports 378(4):207 – 299, 2003. doi:10.1016/S0370-1573(03)00059-0.

I. Haouam. On the Fisk-Tait equation for spin-3/2 fermions interacting with an external magnetic field in noncommutative space-time. Journal of Physical Studies 24(1):1801, 2020. doi:10.30970/jps.24.1801.

K. Li, J. Wang, C. Chen. Representation of noncommutative phase space. Modern Physics Letters A 20(28):2165 – 2174, 2005. doi:10.1142/S0217732305017421.

I. Haouam. Analytical solution of (2+1) dimensional Dirac equation in time-dependent noncommutative phase-space. Acta polytechnica 60(2):111 – 121, 2020. doi:10.14311/AP.2020.60.0111.

I. Haouam. On the noncommutative geometry in quantum mechanics. Journal of Physical Studies 24(2):2002, 2020. doi:10.30970/jps.24.2002.

I. Haouam. The non-relativistic limit of the DKP equation in non-commutative phase-space. Symmetry 11(2):223, 2019. doi:10.3390/sym11020223.

I. Haouam. Continuity equation in presence of a non-local potential in non-commutative phase-space. Open Journal of Microphysics 9(3):15 – 28, 2019. doi:10.4236/ojm.2019.93003.

J. M. Wilkes. The Pauli and Lévy-Leblond equations, and the spin current density. European Journal of Physics 41(3):035402, 2020. doi:10.1088/1361-6404/ab7495.

M. E. Peskin, D. V. Schroeder. An Introduction to Quantum Field Theory. Reading, Mass.: Addison-Wesley Pub. Co., New York, 1995.

M. Najafizadeh, M. Saadat. Thermodynamics of classical systems on noncommutative phase space. Chinese Journal of Physics 51(1):94 – 102, 2013. doi:10.6122/CJP.51.94.

W. Gao-Feng, L. Chao-Yun, L. Zheng-Wen, et al. Classical mechanics in non-commutative phase space. Chinese Physics C 32(5):338, 2008. doi:10.1088/1674-1137/32/5/002.

A. E. F. Djemai, H. Smail. On quantum mechanics on noncommutative quantum phase space. Communications in Theoretical Physics 41(6):837, 2004. doi:10.1088/0253-6102/41/6/837.

M. Chaichian, M. M. Sheikh-Jabbari, A. Tureanu. Hydrogen atom spectrum and the Lamb shift in noncommutative QED. Physical Review Letters 86(13):2716 – 2719, 2001.

S. Biswas. Bohr-van Leeuwen theorem in non-commutative space. Physics Letters A 381(44):3723 – 3725, 2017. doi:10.1016/j.physleta.2017.10.003.