NEW METHOD EVALUATION OF DETAIL MATERIAL AND HEAT FLOWS FOR SINGLE STRING CEMENT CLINKER PLANT

Authors

  • Prihadi Setyo Darmanto Institut Teknologi Bandung, Faculty of Mechanical and Aerospace Engineering, Jalan Ganesha 10, 40132 Bandung Indonesia
  • I Made Astina Institut Teknologi Bandung, Faculty of Mechanical and Aerospace Engineering, Jalan Ganesha 10, 40132 Bandung Indonesia
  • Alfian Kusuma Wardhana Institut Teknologi Bandung, Faculty of Mechanical and Aerospace Engineering, Jalan Ganesha 10, 40132 Bandung Indonesia
  • Alfi Amalia Indonesia Cement and Concrete Institute, Jalan Ciangsana Raya, Bogor, Indonesia
  • Arief Syahlan Indonesia Cement and Concrete Institute, Jalan Ciangsana Raya, Bogor, Indonesia

DOI:

https://doi.org/10.14311/AP.2021.61.0199

Keywords:

Mass & heat conservations, suspension preheater, cyclone, separation efficiency

Abstract

Material flow in each main equipment of a cement clinker plant, which is very useful for controlling the process, is impossible to be measured during operation due to very high temperatures. This paper intends to overcome the difficulties associated with the measurement of these material flow values. This study presents a new method of calculating material flow (gas and solid) in each main equipment of a single string conventional suspension preheater type of a cement clinker plant. Using the proposed method, mass flow rate at a clinker cooler, kiln, suspension preheater (SP) and even each cyclone separator can be calculated with a heat conservation error less than 1 %. With the application of the least square method for solving the overdetermined system of mass and heat conservation equations obtained in the cyclones of SP, the flow of gas and solid materials entering and exiting each cyclone that cannot be measured directly in the operating plant can be approached. Based on the operation temperature data of gas and solid flows monitored in the control room of an Indonesian cement plant as a case study, the mass flow rate of gas and solid entering and exiting as well as separation efficiency of each cyclone can be calculated. The results show that the separation efficiencies of cyclones 1, 2, 3 and 4 are 95 %, 91.89 %, 84.09% and 79.51% respectively. Finally, this study will be very useful by providing data that are impossible to gather by a direct measurement in an operating plant, due to a very high process temperature constraint, for operational control needs, new equipment design, process simulation using computational fluid dynamics (CFD) software and even modification of existing equipment. The proposed method can be applied to all types of modern cement clinker plant configurations, either with or without a calciner including the double strings.

Downloads

Download data is not yet available.

References

R. Virendra, B. Sudheer Prem Kumar, J. Suresh Babu, D. Rajani Kant. Detailed energy audit and conservation in a cement plant. International Research Journal of Engineering and Technology 2(1):248 – 256, 2015.

N. Anantharaman. Energy audit in cement industry (1500 tpd). International Journal of Science Technology & Engineering 3(10):12 – 18, 2017.

S. Sattari, A. Avami. Assessment of energy-saving opportunities of cement industry in Iran. In Proceeding of the 3rd IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development, pp. 585 – 593. Citeseer, Agios Nikolaos, Greece, 2007.

P. Khongprom, U. Suwanmanee. Environmental benefits of the integrated alternative technologies of the Portland cement production: A case study in Thailand. Engineering Journal 21(7):15 – 27, 2017. doi:10.4186/ej.2017.21.7.15.

A. M. Radwan. Different possible ways for saving energy in the cement production. Advances in Applied Science Research 3(2):1162 – 1174, 2012.

T. T. Ayu, M. H. Hailu, F. Y. Hagos, S. M. Atnaw. Energy audit and waste heat recovery system design for a cement rotary kiln in Ethiopia: A case study. International Journal of Automotive and Mechanical Engineering 12:2983 – 3002, 2015. doi:10.15282/ijame.12.2015.14.0249.

M. Parmar, D. Solanki, B. Vegada. Energy and Exergy analysis of cement rotary kiln. International Journal of Advanced Engineering and Research Development 3(4):284 – 293, 2016.

A. I. Okoji, D. E. Babatunde, A. N. Anozie, J. A. Omoleye. Thermodynamic analysis of raw mill in cement industry using aspen plus simulator. In IOP Conference Series: Materials Science and Engineering, vol. 413, p. 012048. 2018. doi:10.1088/1757-899X/413/1/012048.

A. Kolip, A. F. Savas. Energy and exergy analyses of a parallel flow, four-stage cyclone precalciner type cement plant. International Journal of Physical Sciences 5(7):1147 – 1163, 2010. doi:10.5897/IJPS.9000219.

S. Jonnalagadda, S. Reddy. Heat transfer analysis of recuperative air preheater. International Journal of Engineering Research and Management 4(1):105 – 110, 2017.

L. K. Nørskov. Combustion of solid alternative fuels in the cement kiln burner. Ph.D. thesis, Technical University of Denmark, 2012.

H. Mikulcic, E. von Berg, M. Vujanovic, N. Duic. Numerical study of co-firing pulverized coal and biomass inside a cement calciner. Waste Management & Research 32(7):661 – 669, 2014. doi:10.1177/0734242X14538309.

C. Y. H. Chao, P. C. W. Kwong, J. H. Wang, et al. Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions. Bioresource Technology 99(1):83 – 93, 2008. doi:10.1016/j.biortech.2006.11.051.

Verein Deutscher Zementwerke. Activity Report: Process Technology of Cement manufacture. Utilisation of used tyres in cement works. Tech. rep., Verein Deutscher Zementwerke, 2003 - 2005.

S. Kourounis, S. Tsivilis, P. E. Tsakiridis, et al. Properties and hydration of blended cements with steelmaking slag. Cement and Concrete Research 37(6):815 – 822, 2007. doi:10.1016/j.cemconres.2007.03.008.

M. Varma, P. Gadling. Additive to cement, A pozzolanic material-fly ash. International Journal of Engineering Research 3(5):558 – 564, 2016. doi:10.17950/ijer/v5i3/010.

D. A. Y. Ghassan K. Al-Chaar, L. A. Kallemeyn. The Use of Natural Pozzolan in Concrete as an Additive or Substitute for Cement. ERDC/CERL TR-11-46. Tech. rep., Federal University of Technology, Minna, Niger.

A. Allahverdi, S. Salem. Studies on main properties of ternary blended cement with limestone powder and microsilica. Iranian Journal of Chemical Engineering 4(1):3 – 13, 2007.

D. Paa, P. Darmanto. Studi Numerik Pengaruh Laju Umpan Kiln terhadap Rugi Tekanan dan Efisiensi Pemisahan Top Siklon Suatu Pabrik Semen. In Proceeding Seminar Nasional Tahunan Teknik Mesin XIII (SNTTM XIII), pp. 625 – 630. 2014.

P. S. Darmanto, I. M. Astina, A. Syahlan. Design and Implementation of Deduster for Improving Fine Coal Quality in a Cement Plant. In The International Conference on Fluid and Thermal Heat Conversion (FTEC). Tongyeong, South Korea, 2009.

H. Mikulcic, E. Von Berg, M. Vujanovic, N. Duic. Numerical study of co-firing pulverized coal and biomass inside a cement calciner. Waste management & research 32(7):661 – 669, 2014. doi:10.1177/0734242X14538309.

A. C. Kahawalage, M. C. Melaaen, L.-A. Tokheim. Numerical modeling of the calcination process in a cement kiln system. In Linköping Electronic Conference Proceedings, vol. 138, pp. 83 – 89. Reykjavik, Iceland, 2017. doi:10.3384/ecp1713883.

G. Borsuk, J. Wydrych, B. Dobrowolski. Modification of the inlet to the tertiary air duct in the cement kiln installation. Chemical and Process Engineering 37(4):517 – 527, 2016. doi:10.1515/cpe-2016-0042.

Claus Bauer. Modernization and production increase with cement kilns. Humbolt report. Tech. rep., KHD Humboldt Wedag AG, 2000.

X. D’Hubert. Latest burner profiles. Global Cement Magazine 03, 2017.

N. Gopani, A. Bhargava. Design of high efficiency cyclone for tiny cement industry. International Journal of Environmental Science and Development 2(5):350 – 254, 2011. doi:10.7763/IJESD.2011. V2.150.

H. Mikulcic, E. Von Berg, M. Vujanovic, et al. Numerical analysis of cement calciner fuel efficiency and pollutant emissions. Clean Technologies and Environmental Policy 15(3):489 – 499, 2013. doi:10.1007/s10098-013-0607-5.

A. T. Gebremariam. CFD Modelling and Experimental Testing of Thermal Calcination of Kaolinite Rich Clay Particles - An Effort towards Green Concrete. Ph.D. thesis, Aalborg University, Denmark, 2015.

Y. Sonavane, E. Specht. Numerical analysis of the heat transfer in the wall of rotary kiln using finite element method ANSYS. In Seventh International Conference on CFD in the Minerals and Process Industrie CSIRO, pp. 1 – 5. Melbourne, Australia, 2009.

E. Copertaro, A. A. Estupinan Donoso, B. Peters. A discrete-continuous method for predicting thermochemical phenomena in a cement kiln and supporting indirect monitoring. Engineering Journal 22(6):165 – 183, 2018. doi:10.4186/ej.2018.22.6.165.

Z. Dulaimi, H. Hameed, A. Ali, M. Alfahham. Investigation the effect of calcinations degree and rotary kiln gases bypass opining in the preheating system for dry cement industries. International Journal of Latest Trends in Engineering and Technology 10(3):119 – 127, 2018. doi:10.21172/1.103.21.

F.L. Smidth. Preheater calciner systems. www.flsmidth-prod-cdn.azureedge.net/-/media/brochures/brochures-products/pyro/2000-2017/ preheater-calciner-systems.pdf?rev=3519484b-6b80-47ee-811a-b69f889f353f, 2011.

A. Atmaca, R. Yumrutas. Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry. Applied Thermal Engineering 66(1-2):435 – 444, 2014. doi:10.1016/j.applthermaleng.2014.02.038.

S. B. Nithyananth, H. Rahul. Thermal heat audit of kiln system in a cement plant. International Journal of Modern Engineering Research 5(12):73 – 79, 2015.

P. Prasanth, G. Sudhakar. Analysis of heat loss in kiln in cement industry - A review. In International Conference on Explorations and Innovations in Engineering & Technology (ICEIET –2016).

D. Touil, H. Belabed, C. Frances, S. Belaadi. Heat exchange modeling of a grate clinker cooler and entropy production analysis. International Journal of Heat and Technology 23(1):61 – 68, 2005.

L. Farag. Energy and exergy analyses of egyptian cement kiln plant with complete kiln gas diversion through by pass. International Journal of Advances in Applied Sciences 1(1):35 – 44, 2012. doi:10.11591/ijaas.v1i1.757.

F. L. Smidth. Dry Process kiln. FL Smidth Inc, USA, 2004.

W. H. Duda. Cement Data Book I: International Process in the Cement Industry. French & European Pubs, 3rd edn., 1985.

D. K. Fidaros, C. A. Baxevanou, C. D. Dritselis, N. S. Vlachos. Numerical modelling of flow and transport processes in a calciner for cement production. Powder Technology 171(2):81 – 95, 2007. doi:10.1016/j.powtec.2006.09.011.

F. L. Smidth. Plant Services Devision. Heat Conservations. International cement production seminar, Lecture 5.13A. Tech. rep., FL Smidth Inc, 1990.

T. Chatterjee. Burnability and clinkerization of cement raw mixes. In Advances in Cement Technology, pp. 69 – 113. Pergamon Press, 1983. doi:10.1016/B978-0-08-028670-9.50009-0.

P. A. Aisop, H. Chen, H. Tseng. The cement plant operations handbook. Tradeship Publications Ltd, Surrey, UK, 5th edn., 2007.

Holcim Group Support Ltd. Cement Manufacturing Services. Reference Guide for Process Performance Engineers. Thermal Process and Materials Technology, Edition 3.0. Tech. rep., Holcim Group Support Ltd., 2006.

A. Howard, R. Chris. Elementary Linear Algebra. John Wiley and Sons Inc., United States, 9th edn., 2005.

I. Markovsky. Low rank approximation - Algorithms, implementation, applications. Springer-Verlag London, 2012. doi:10.1007/978-1-4471-2227-2.

J. Chen, M. Shi. Analysis on cyclone collection efficiencies at high temperatures. China Particuology 1(1):20 – 26, 2003. doi:10.1016/S1672-2515(07)60095-5.

A.-N. Huang, N. Maeda, D. Shibata, et al. Influence of a laminarizer at the inlet on the classification performance of a cyclone separator. Separation and Purification Technology 174:408 – 416, 2017. doi:10.1016/j.seppur.2016.09.053.

A. Amalia, A. Syahlan, P. S. Darmanto. Heat auditing of Gresik and Tonasa plants. Internal Project Report of Indonesian Cement and Concrete Institute. Tech. rep., Indonesian Cement and Concrete Institute, 2006.

A. Amalia, A. Syahlan, P. S. Darmanto. Design and implementation of hot gas system for raw coal drying in Tonasa 3 Plant. Internal Project Report of Indonesian Cement and Concrete Institute. Tech. rep., Indonesian Cement and Concrete Institute, 2006.

H. Mikulcic, E. Von Berg, M. Vujanovic, et al. CFD analysis of a cement calciner for a cleaner cement production. Chemical Engineering Transactions 29:1513 – 1518, 2012. doi:10.3303/CET1229253.

A. Amalia, A. Syahlan, P. S. Darmanto. Modification of hot gas utilization for drying lime stone and clay at Tonasa 2 and 3 plants. Final Project Report of Indonesian Cement and Concrete Institute. Tech. rep., Indonesian Cement and Concrete Institute, 2007.

Downloads

Published

2021-03-01

How to Cite

Darmanto, P. S., Astina, I. M. ., Wardhana, A. K. ., Amalia, A. ., & Syahlan, A. . (2021). NEW METHOD EVALUATION OF DETAIL MATERIAL AND HEAT FLOWS FOR SINGLE STRING CEMENT CLINKER PLANT. Acta Polytechnica, 61(1), 199–218. https://doi.org/10.14311/AP.2021.61.0199

Issue

Section

Articles