Use of thermal analysis for the detection of calcium oxalate in selected forms of plastering exposed to the effects of Serpula lacrymans

Authors

  • Drahomíra Cígler Žofková Czech Technical University in Prague, Faculty of Civil Engineering, Thákurova 7, 166 29 Prague 6, Czech Republic
  • Jiří Frankl Czech Academy of Sciences, Institute of Theoretical and Applied Mechanics, Prosecká 809/76, 190 00 Prague 9, Czech Republic
  • Dita Frankeová Czech Academy of Sciences, Institute of Theoretical and Applied Mechanics, Prosecká 809/76, 190 00 Prague 9, Czech Republic

DOI:

https://doi.org/10.14311/AP.2021.61.0511

Keywords:

dry rot, Serpula lacrymans, lime mortar, thermal analysis, infrared spectroscopy (FTIR), calcium oxalate

Abstract

The article discusses the interaction of metabolic products of a wood-destroying fungus of the dry rot species (Serpula lacrymans (Wulfen) P. Karst.) with a commonly used lime mortar. Mortar samples used in the presented experiment were made mostly in laboratory conditions so as to make it possible to set input conditions and to determine initial properties of the examined samples. Matured lime mortar samples were placed in cultivation boxes with a growth of Serpula lacrymans and exposed to its action for a predetermined period of time. For a comparison, mortar samples taken “in situ” from real structures were also subjected to the experiment. The examined samples were subjected to a thermal analysis and a comparative measurement by infrared spectroscopy (FTIR). The results of the measurement of infected samples were compared with the results obtained in the reference (control) samples. The experiment carried out was focused on assessing the presence of calcium oxalate, which is secreted into the surroundings of the mycelium during the active growing of Serpula lacrymans.

Downloads

Download data is not yet available.

References

J. W. Palfreyman, N. A. White, T. E. J. Buultjens, H. Glancy. The impact of current research on the treatment of infestations by the dry rot fungus Serpula lacrymans. International Biodeterioration & Biodegradation 35(4):369–395, 1995. https://doi.org/10.1016/0964-8305(95)00064-3.

O. Schmidt. Wood and Tree Fungi — Biology, Damage, Protection, and Use. Springer, Berlin, 2006. https://doi.org/10.1007/3-540-32139-x.

D. H. Jennings, A. F. Bravery. Serpula Lacrymans: Fundamental Biology and Control Strategies. Wiley, Chichester, 1991. ISBN 047193058X.

J. Gabriel, K. Švec. Occurrence of indoor wood decay basidiomycetes in Europe. Fungal Biology Reviews 31(4):212–217, 2017. https://doi.org/10.1016/j.fbr.2017.05.002.

J. W. Palfreyman. The domestic dry rot fungus, Serpula lacrymans, its natural origins and biological control. In Workshop ARIADNE 8 – Bio-degradation of cultural heritage, ARCCHIP. 2001.

J. Bech-Andersen. The Dry Rot Fungus and Other Fungi in Houses. 5th edition. Hussvamp laboratoriet, Denmark, 1995. ISBN 87-89560-25-6. IRG/WP 95-10124.

J. Bech-Andersen. The influence of the dry rot fungus (Serpula lacrymans) in vivo on insulation materials. Material und Organismen 22:191–202, 1987.

J. Bech-Andersen. Serpula lacrymans the dry rot fungus: review of previous papers, 1989. International Research Group on Wood Preservation Document IRG/WP/1393.

J. W. Palfreyman, E. M. Philips, H. J. Staines. The effect of calcium ion concentration on the growth and decay capacity of Serpula lacrymans and Coniophora puteana. Holzforschung 50:3–8, 1996. https://doi.org/10.1515/hfsg.1996.50.1.3.

J. S. Schilling, J. Jellison. Oxalate regulation by two brown rot fungi decaying oxalate-amended and non-amended wood. Holzforschung 59:681–688, 2005. https://doi.org/10.1515/hf.2005.109.

G. M. Gadd, J. Bahri-Esfahani, Q. Li, et al. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews 28(2-3):36–55, 2014. https://doi.org/10.1016/j.fbr.2014.05.001.

F. Green, M. J. Larsen, J. E. Winandy, T. L. Highley. Role of oxalic acid in incipient brown-rot decay. Material und Organismen 26(3):191–213, 1991.

M. Guggiari, R. Bloque, M. Arango, et al. Experimental calcium-oxalate crystal production and dissolution by selected wood-rot fungi. International Biodeterioration & Biodegradation 65(6):803–809, 2011. https://doi.org/10.1016/j.ibiod.2011.02.012.

P. Mec, T. Murínová, K. Kubečka. Možnosti využití termické analýzy v oblasti stavebních materiálů. Stavební obzor (2):39–43, 2013.

Termická analýza keramických a sklářských surovin, learning text, 2012. ICT in Prague, Prague.

Termická analýza a mikrostruktura nízkopálené keramiky, learning text, 2012. ICT in Prague, Prague.

J. L. Perez-Rodriguez, A. Duran, M. A. Centeno, et al. Thermal analysis of monument patina containing hydrated calcium oxalate. Thermochimica Acta 512(1-2):5–12, 2011. https://doi.org/10.1016/j.tca.2010.08.015.

Y. Akamatsu, M. Takahashi, M. Shimada. Production of oxalic acid by wood-rotting basidiomycetes grown on low and high nitrogen culture media. Material und Organismen 28(4):251–264, 1994.

T. Watanabe, N. Shitan, S. Suzuki, et al. Oxalate efflux transporter from the brown rot fungus Fomitopsis palustris. Applied and Environmental Microbiology 76(23):7683–7690, 2010. https://doi.org/10.1128/aem.00829-10.

K. M. Nobles. Identification of cultures of wood - inhabiting hymenomycetes. Canadian Journal of Botany 43(9):1097–1138, 1965. https://doi.org/10.1139/b65-126.

T. Huckfeldt, O. Schmidt. Identification key for European strand-forming house-rot fung. Mycologist 20(2):42–56, 2006. https://doi.org/10.1016/j.mycol.2006.03.012.

O. Severin. Stavba domu v praxi. Díl II. Grada Publishing, Praha, 2002. ISBN 80-247-0263-0.

A. Blažek. Termická analýza. SNTL – Nakladatelství technické literatury, Praha, 1974.

Uhličitan vápenatý. [2020-06-13], https://cs.wikipedia.org/wiki/Uhli%C4%8Ditan_v%C3%A1penatC3%BD.

Downloads

Published

2021-08-31

How to Cite

Cígler Žofková, D., Frankl, J., & Frankeová, D. (2021). Use of thermal analysis for the detection of calcium oxalate in selected forms of plastering exposed to the effects of Serpula lacrymans. Acta Polytechnica, 61(4), 511–515. https://doi.org/10.14311/AP.2021.61.0511

Issue

Section

Articles