Post-impact mechanical characterization of HMPE yarns

Authors

  • Eduarda da Silva Belloni Federal University of Rio Grande, Engineering School, Stress Analysis Laboratory, 96203-000, Rio Grande/RS, Brazil; Federal University of Rio Grande, Post Graduation Program in Mechanical Engineering, 96203-000, Rio Grande/RS, Brazil https://orcid.org/0000-0002-5334-0602
  • Fernanda Mazuco Clain Federal University of Rio Grande, Engineering School, Stress Analysis Laboratory, 96203-000, Rio Grande/RS, Brazil
  • Carlos Eduardo Marcos Guilherme Federal University of Rio Grande, Engineering School, Stress Analysis Laboratory, 96203-000, Rio Grande/RS, Brazil; Federal University of Rio Grande, Post Graduation Program in Mechanical Engineering, 96203-000, Rio Grande/RS, Brazil

DOI:

https://doi.org/10.14311/AP.2021.61.0406

Keywords:

Creep resistance, fatigue resistance, impact test, mechanical testing, HMPE yarns.

Abstract

The present work evaluates the mechanical behaviour of High Modulus Polyethylene (HMPE) yarns after being impacted by sudden axial loads. The influence of loading conditions on the structural integrity of yarns is assessed by tensile, fatigue, and creep tests before and after the impact events. The impact loads were inferred by drop-weight adopting a 300mm height and weights corresponding to 4, 5, and 6% of Yarn Breaking Load (YBL). At 5% YBL, most specimens fail after the impact, and at 6% YBL, all specimens fail. The application of 4% YBL tests results in enhanced creep and fatigue resistances and a decrease in the tensile resistance. Finally, a Scanning Electron Microscopy (SEM) analysis showed that the yarn filaments tend to straighten after the impact, while a decrease in their diameter is noticed due to the longitudinal deformation.

Downloads

Download data is not yet available.

References

J. P. Duarte, C. E. M. Guilherme, A. H. M. F. T. da Silva, et al. Lifetime prediction of aramid yarns applied to offshore mooring due to purely hydrolytic degradation. Polymers and Polymer Composites 27(8):518 – 524, 2019. https://doi.org/10.1177/0967391119851386.

C. A. Lopes. Análise de Fluência em Fibra de HMPE para Cabos Utilizados na Ancoragem tipo “Taut Leg” de Sistemas Flutuantes em Águas Profundas. Ph.D. thesis, Federal University of Rio Grande, Brazil, 2003.

J. L. J. Van Dingenen. Gel-spun high-performance polyethylene fibres. In High-performance Fibres, pp. 62 – 92. 2000.

L. A. Mohnsan. Simulação numérica do comportamento de cabos viscoelásticos. Ph.D. thesis, Federal University of Rio Grande, Brazil, 2008.

F. M. B. Coutinho, I. L. Mello, L. C. De Santa Maria. Polietileno: principais tipos, propriedades e aplicações. Polímeros 13(1):1 – 13, 2003. https://doi.org/10.1590/S0104-14282003000100005.

V. Sry, Y. Mizutani, G. Endo, et al. Consecutive impact loading and preloading effect on stiffness of woven synthetic-fiber rope. Journal of Textile Science and Technology 3:1 – 16, 2017. https://doi.org/10.4236/jtst.2017.31001.

J. Vogwell, J. Minguez. The safety of rock climbing protection devices under falling loads. Engineering Failure Analysis 14(6):1114 – 1123, 2007. https://doi.org/10.1016/j.engfailanal.2006.11.072.

P. Davies, Y. Reaud, L. Dussud, P. Woerther. Mechanical behaviour of HMPE and aramid fibre ropes for deep sea handling operations. Ocean Engineering 38(17):2208 – 2214, 2011. https://doi.org/10.1016/j.oceaneng.2011.10.010.

M. G. Northolt, J. J. M. Baltussen, B. Schaffers-Korff. Yielding and hysteresis of polymer fibres. Polymer 36(18):3485 – 3492, 1995. https://doi.org/10.1016/0032-3861(95)92020-F.

G. S. Husak, F. E. G. Chimisso. Construction of a device to test creep behavior of synthetic multifilaments, submerged in cold water, used in offshore mooring systems and results. In 11th Youth Symposium on Experimental Solid Mechanics, pp. 146 – 151. IMEKO TC15, Brasov, Romania, 2012.

F. T. Stumpf, C. E. M. Guilherme, F. E. G. Chimisso. Preliminary assessment of the change in the mechanical behavior of synthetic yarns submitted to consecutive stiffness tests. Acta Polytechnica CTU Proceedings 3:75 – 77, 2016. https://doi.org/10.14311/APP.2016.3.0075.

C. Humeau, P. Davies, P. Smeets, et al. Tension fatigue failure prediction for HMPE fibre ropes. Polymer Testing 65:497 – 504, 2018. https://doi.org/10.1016/j.polymertesting.2017.12.014.

P. Davies, M. François, N. Lacotte, et al. An empirical model to predict the lifetime of braided HMPE handling ropes under cyclic bend over sheave (CBOS) loading. Ocean Engineering 97:74 – 81, 2015. https://doi.org/10.1016/j.oceaneng.2015.01.003.

F. V. De Camargo, C. E. M. Guilherme, F. Fragassa, et al. Cyclic stress analysis of polyester, aramid, polyethylene and liquid crystal polymer yarns. Acta Polytechnica 56:402 – 408, 2016. https://doi.org/10.14311/AP.2016.56.0402.

E. L. V. Louzada, C. E. M. Guilherme, F. T. Stumpf. Evaluation of the fatigue response of polyester yarns after the application of abrupt tension loads. Acta Polytechnica CTU Proceedings 7:76 – 78, 2017. https://doi.org/10.14311/APP.2017.7.0076.

J. D. Pfarrius. Theoretical and experimental modeling of a socket sandwich for use in tension tests of synthetic ropes. In 6th Youth Symposium on Experimental Solid Mechanics, pp. 13 – 24. YSESM 07, Vrnjacka Banja, Serbia, 2007.

M. Zoroufi. Significance of fatigue testing parameters in plastics versus metals. In 13th International ASTM/ESIS Symposium on Fatigue and Fracture Mechanics, pp. 37 – 52. ASTM, Jacksonville, United States, 2013.

ASTM D885:1998. Standard Test Methods for Tire Cords, Tire Cord Fabrics, and Industrial Filament Yarns Made from Manufactured Organic-Base Fibers. Standard, American Society for Testing and Materials, West Conshohocken, 1998.

DNVGL-OS-E303:2010. Yarns for Offshore Mooring Fibre Ropes. Standard, DNV GL, 2010.

BS EN 892:2012. Mountaineering equipment. Dynamic mountaineering ropes. Safety requirements and test methods. Standard, British Standards Institution, London, 2012.

I. Emri, A. Nikonov, B. Zupancic, U. Florjancic. Time-dependent behavior of ropes under impact loading: A dynamic analysis. Sports Technology 1(4 - 5):208 – 219, 2008. https://doi.org/10.1080/19346182.2008.9648475.

D. C. Montgomery. Design and analysis of experiments. John Wiley & Sons, New York, 1st edn., 2013.

K. W. Doak. Ethylene polymers. In H. M. Mark, N. M. Bikales, C. G. Overberg, G. Menges (eds.), Encyclopedia of Polymer Science and Engineering. John-Wiley & Sons, New York, 1986.

Downloads

Published

2021-06-30

How to Cite

Belloni, E. da S., Clain, F. M., & Guilherme, C. E. M. . (2021). Post-impact mechanical characterization of HMPE yarns. Acta Polytechnica, 61(3), 406–414. https://doi.org/10.14311/AP.2021.61.0406

Issue

Section

Articles