• Ayokunle O. Ayeleso Cape Peninsula University of Technology, Electrical, Electronic & Computer Engineering, Bellville 7535, PO Box 1906, Cape Town, South Africa
  • Atanda K. Raji Cape Peninsula University of Technology, Electrical, Electronic & Computer Engineering, Bellville 7535, PO Box 1906, Cape Town, South Africa




Solar, liquid metal, disk MHD generator, magnetic field, current density.


The use of solar-heated liquid metal in a magnetohydrodynamics (MHD) generator provides an alternative and direct conversion method for electric power generation. This prompted the present study to conduct a three-dimensional numerical analysis for a liquid Ga68In20Sn12 flow exposed to several uniform magnetic field intensities (Bo of 0.5 T, 1T and, 1.41 T) within a disk channel geometric boundary. The aim is to study the influence of the external magnetic fields on the generator performance and the fluid flow stability at a high Reynolds number (Re) and Hartmann number (Ha) using the Ansys Fluent software. The simulation results show that at Re of ≈ 2.44e6, the fluid velocity decreases inside the generator regardless of Bo. When Bo of 1T and 1.41T are applied, the velocity magnitude decreases and spreads within the disk channel and walls due to high Ha values (5874 and 8282). The fluid pressure increases from the nozzle pipe inlet to the disk channel and decreases towards the outlet. The induced current density in the radial direction, jx, increases within the disk channel and near the inner electrode edge as Bo increases. A significant observation is that the current densities obtained for Bo of 1T and 1.41T cases are higher than in other cases. The numerical analysis obtained in this study showed that the Bo of either 1T or 1.41T is needed to achieve the required flow stability, current density, and output powers.


F. Mebarek-Oudina, R. Bessaih, B. Mahanthesh, et al. Magneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metal. International Journal of Numerical Methods for Heat & Fluid Flow 31(4):1172 – 1189, 2020. doi:10.1108/HFF-05-2020-0321.

S. Marzougui, M. Bouabid, F. Mebarek-Oudina, et al. A computational analysis of heat transport irreversibility phenomenon in a magnetized porous channel. International Journal of Numerical Methods for Heat & Fluid Flow 2020. doi:10.1108/HFF-07-2020-0418.

A. Zaim, A. Aissa, F. Mebarek-Oudina, et al. Galerkin finite element analysis of magneto-hydrodynamic natural convection of Cu-water nanoliquid in a baffled U-shaped enclosure. Propulsion and Power Research 9(4):383 – 393, 2020. doi:10.1016/j.jppr.2020.10.002.

F. Mebarek-Oudina, O. D. Makinde. Numerical simulation of oscillatory MHD natural convection in cylindrical annulus: Prandtl number effect. Defect and Diffusion Forum 387:417 – 427, 2018. doi:10.4028/www.scientific.net/ddf.387.417.

A. O. Ayeleso, M. T. E. Kahn. Modelling of a combustible ionised gas in thermal power plants using MHD conversion system in South Africa. Journal of King Saud University - Science 30(3):367 – 374, 2018. doi:10.1016/j.jksus.2017.01.007.

M. I. Hasan, A. J. F. Ali, R. S. Tufah. Numerical study of the effect of channel geometry on the performance of magnetohydrodynamic micro pump. Engineering science and technology, an international journal 20(3):982 – 989, 2017. doi:10.1016/j.jestch.2017.01.008.

Y.-N. Wang, L.-M. Fu. CMicropumps and biomedical applications - A review. Microelectronic Engineering 195:121 – 138, 2018. doi:10.1016/j.mee.2018.04.008.

A. O. Ayeleso, M. T. E. Kahn, A. K. Raji. Plasma energy conversion system for electric power generation. In 12th International Conference on the Industrial and Commercial Use of Energy, pp. 206 – 211. Cape Town, South Africa.

L. Li, H.-l. Huang, G.-p. Zhu. Numerical Simulations for a Partial Disk MHD Generator Performance. Energies 11(1):127, 2018. doi:10.3390/en11010127.

H. Teimouri, M. Afrand, N. Sina, et al. Natural convection of liquid metal in a horizontal cylindrical annulus under radial magnetic field. International Journal of Applied Electromagnetics and Mechanics 49(4):453 – 461, 2015. doi:10.3233/JAE-150028.

M. Afrand, S. Farahat, A. H. Nezhad, et al. 3-D numerical investigation of natural convection in a tilted cylindrical annulus containing molten potassium and controlling it using various magnetic fields. International Journal of Applied Electromagnetics and Mechanics 46(4):809 – 821, 2014. doi:10.3233/JAE-141975.

S. L. Yadav, D. Kumar, A. K. Singh. Magnetohydrodynamic flow in horizontal concentric cylinders. International Journal of Industrial Mathematics 11(2):89 – 98, 2019.

X.-D. Zhang, X.-H. Yang, Y.-X. Zhou, et al. Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management. Energy conversion and management 185:248 – 258, 2019. doi:10.1016/j.enconman.2019.02.010.

M. H. Taheri, N. Askari, M. H. Mahdavi. Prediction of entrance length for magnetohydrodynamics channels flow using numerical simulation and artificial neural network. Journal of Applied and Computational Mechanics 6(3):582 – 592, 2020. doi:10.22055/jacm.2019.29201.1571.

Z. Li, J. Li, X. Li, M.-J. Ni. Free surface flow and heat transfer characteristics of liquid metal galinstan at low flow velocity. Experimental Thermal and Fluid Science 82:240 – 248, 2017. doi:10.1016/j.expthermflusci.2016.11.021.

A. Hirsch, L. Dejace, H. O. Michaud, S. P. Lacour. Harnessing the rheological properties of liquid metals to shape soft electronic conductors for wearable applications. Accounts of chemical research 52(3):534 – 544, 2019. doi:10.1021/acs.accounts.8b00489.

J. Touronen, M. Männistö, D. Richon, et al. Application of GaInSn Liquid Metal Alloy Replacing Mercury in a Phase Equilibrium Cell: Vapor Pressures of Toluene, Hexylbenzene, and 2-Ethylnaphthalene. Journal of Chemical & Engineering Data 65(7):3270 – 3276, 2020. doi:10.1021/acs.jced.9b01208.

S. S. Kadlaskar, J. H. Yoo, J. B. Lee, W. Choi. Costeffective surface modification for galinstan® lyophobicity. Journal of colloid and interface science 492:33 – 40, 2017.

M. H. Avnaim, B. Mikhailovich, A. Azulay, A. Levy. Numerical and experimental study of the traveling magnetic field effect on the horizontal solidification in a rectangular cavity part 1: Liquid metal flow under the TMF impact. International Journal of Heat and Fluid Flow 69:23 – 32, 2018. doi:10.1016/j.ijheatfluidflow.2017.11.003.

M. H. Avnaim, B. Mikhailovich, A. Azulay, A. Levy. Numerical and experimental study of the traveling magnetic field effect on the horizontal solidification in a rectangular cavity part 2: Acting forces ratio and solidification parameters. International Journal of Heat and Fluid Flow 69:9 – 22, 2018. doi:10.1016/j.ijheatfluidflow.2017.11.004.

A. Altintas, I. Ozkol. Magnetohydrodynamic flow of liquid-metal in circular pipes for externally heated and non-heated cases. Journal of applied fluid mechanics 8:507 – 514, 2015. doi:10.18869/acadpub.jafm.67.222.22862.

M. Gallo, H. Nemati, B. J. Boersma, et al. “Magnetic-ribs” in fully developed laminar liquid–metal channel flow. International Journal of Heat and Fluid Flow 56:198 – 208, 2015. doi:10.1016/j.ijheatfluidflow.2015.07.010.

C. Kratzsch. Liquid Metal Flow in Continuous Casting Molds: A Numerical Approach on Electromagnetic Flow Control, Turbulence and Multiphase Phenomena. Ph.D. thesis, Technische Universität Bergakademie Freiberg, 2018. doi:10.13140/RG.2.2.21872.92168.

S. Mahjabin, M. A. Alim. Effect of Hartmann number on free convective flow of MHD fluid in a square cavity with a heated cone of different orientation. American Journal of Computational Mathematics 8(4):314 – 325, 2018. doi:10.4236/ajcm.2018.84025. [25] N. Kanaris, X. Albets, D. Grigoriadis, S. Kassinos. Three-dimensional numerical simulations of magnetohydrodynamic flow around a confined circular cylinder under low, moderate, and strong magnetic fields. Physics of Fluids 25(7):074102, 2013. doi:10.1063/1.4811398.

M. H. Taheri, M. Abbasi, M. Khaki Jamei. Development length of laminar magnetohydrodynamics pipe flows. Journal of Computational & Applied Research in Mechanical Engineering 9(2):397 – 407, 2020. doi:10.22061/jcarme.2019.4416.1533.

O. D. Makinde, O. O. Onyejekwe. A numerical study of MHD generalized Couette flow and heat transfer with variable viscosity and electrical conductivity. Journal of Magnetism and Magnetic Materials 323(22):2757 – 2763, 2011. doi:10.1016/j.jmmm.2011.05.040.

N. B. Morley, S. Smolentsev, R. Munipalli, et al. Progress on the modeling of liquid metal, free surface, MHD flows for fusion liquid walls. Fusion Engineering and Design 72(1 - 3):3 – 34, 2004. doi:10.1016/j.fusengdes.2004.07.013.

D. Jian, C. Karcher. Flow rate measurements in turbulent liquid metal channel flow using Time-of-Flight Lorentz force velocimetry. Proceedings in Applied Mathematics and Mechanics 12(1):577 – 578, 2012. doi:10.1002/pamm.201210277.

D. Jian, C. Karcher. Electromagnetic flow measurements in liquid metals using time-of- light Lorentz force velocimetry. Measurement science and technology 23(7):074021, 2012. doi:10.1088/0957-0233/23/7/074021.

M. Modestov, E. Kolemen, A. E. Fisher, M. G. Hvasta. Electromagnetic control of heat transport within a rectangular channel filled with flowing liquid metal. Nuclear Fusion 58(1):016009, 2017. doi:10.1088/1741-4326/aa8bf4.