Pseudorandom Testing – A Study of the Effect of the Generator Type

P. Fišer, H. Kubátová


The test pattern generator produces test vectors that are applied to the tested circuit during pseudo-random testing of combinational circuits. The nature of the generator thus directly influences the fault coverage achieved. In this paper we discuss the influence of the type of pseudo-random pattern generator on stuck-at fault coverage. Linear feedback shift registers (LFSRs) are mostly used as test pattern generators, and the generating polynomial is primitive to ensure the maximum period. We have shown that it is not necessary to use primitive polynomials, and moreover that their using is even undesirable in most cases. This fact is documented by statistical graphs. The necessity of the proper choice of a generating polynomial and an LFSR seed is shown here, by designing a mixed-mode BIST for the ISCAS benchmarks.An alternative to LFSRs are cellular automata (CA). We study the effectiveness of CA when used as pseudo-random pattern generators. The observations are documented by statistical results. 


built-in self-test; diagnostics; testability; LFSR; test pattern generators; column-matching

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague