• Elena Igorevna Diskaeva Stavropol State Medical University, Department of Physics and Mathematics, Mira 310, 355017 Stavropol, Russia
  • Olga Vladimirovna Vecher Stavropol State Medical University, Department of Physics and Mathematics, Mira 310, 355017 Stavropol, Russia
  • Igor Alexandrovich Bazikov Stavropol State Medical University, Department of Microbiology, Mira 310, 355017 Stavropol, Russia
  • Karine Sergeevna Elbekyan Stavropol State Medical University, Department of General and Biological Chemistry, Mira 310, 355017 Stavropol, Russia
  • Elena Nikolaevna Diskaeva Branch of the Federal State Budget Educational Institution of Higher Education “MIREA – Russian Technological University” in Stavropol, Department of Industrial Technology, Kulakov Avenue 8, 355035 Stavropol, Russia



Niosome, nonionic surfactant vesicles, viscosity of niosomal dispersion, vesical size.


The aim of this study was to experimentally investigate the dependence of viscosity coefficient of niosomal dispersion based on PEG-12 Dimethicone on the temperature and size of niosomes vesicles. The experiments were carried out with niosomes, the average size of which varied from 85 to 125 nm. The temperature varied from 20 to 60 °C, the volume concentration varied from 1 to 10 %. The particle size was determined by scanning electron microscopy (SEM) with subsequent statistical data processing. This study showed that the viscosity of niosomal dispersions significantly depends on both the temperature and the size of niosomes vesicles. With increasing temperature, the viscosity of niosomal dispersions decreases and with increasing particle size, the viscosity increases.


R. C. Dutta. Drug carriers in pharmaceutical design: promises and progress. Current pharmaceutical design 13(7):761 – 769, 2007. doi:10.2174/138161207780249119.

H. S. Nalwa (ed.). Handbook of nanostructured materials and nanotechnology. Academic Press, Boston, 2000.

S. P. Vyas, R. K. Khar. Targeted & controlled drug delivery : novel carrier systems. CBS Publishers & Distributors, 2002.

G. P. Kumar, P. Rajeshwarrao. Nonionic surfactant vesicular systems for effective drug delivery - an overview. Acta Pharmaceutica Sinica B 1(4):208 – 219, 2011. doi:10.1016/j.apsb.2011.09.002.

A. Kapoor. An overview on niosomes - A novel vesicular approach for ophthalmic drug delivery. Pharma Tutor 4(2):28 – 33, 2016.

Z. S. Bayindir, N. Yuksel. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. Journal of Pharmaceutical Sciences 99(4):2049 – 2060, 2010. doi:10.1002/jps.21944.

V. F. Naggar, S. S. El gamal, A. N. Allam. Proniosomes as a stable carrier for oral Acyclovir: Formulation and physicochemical characterization. Journal of American Science 8(9):417 – 428, 2012.

R. Pal. Modeling the viscosity of concentrated nanoemulsions and nanosuspensions. Fluids 1(2), 2016. doi:10.3390/fluids1020011.

J. Happel, H. Brenner. The Viscosity of Particulate Systems, pp. 431 – 473. Springer Netherlands, Dordrecht, 1983. doi:10.1007/978-94-009-8352-6_9.

J. Gonzalez-Gutierrez, S. Hert, B. von Bernstorff, I. Emri. Prediction of viscosity of pim feedstock materials with different particle size distribution. In 31th Danubia-Adria Symposium in Advances in Experimental Mechanics. Kempten University, Germany, 2014.

H. J. H. Brouwers. Viscosity of a concentrated suspension of rigid monosized particles. Physical Review E 81(5):051402, 2010. doi:10.1103/PhysRevE.81.051402.

M. Ochowiak, J. Rózanski. Rheology and structure of emulsions and suspensions. Journal of Dispersion Science and Technology 33(2):177 – 184, 2012. doi:10.1080/01932691.2010.548694.

A. J. Batschinski. Untersuchungen Aber die innere Reibnng der Flüssigkeiten. I. Zeitschrift für Physikalische Chemie 84(1):643 – 706, 1913. doi:10.1515/zpch-1913-8442.

S. Mueller, E. Llewellin, H. Mader, et al. The rheology of suspensions of solid particles. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences 466(2116):1201 – 1228, 2009. doi:10.1098/rspa.2009.0445.

I. A. Bazikov, P. A. Omelyanchuk. The method of delivery of biologically active substances with the help of niosomes, RF patent, 2539396, 2014.

I. A. Bazikov. A method for transdermal transfer of active substances using niosomes on the basis of PEG-12 dimethicone, RF patent, 2320323, 2008.

I. A. Bazikov, V. V. Lukinova, A. N. Maltsev, et al. Interaction niosomal doxorubicin cell membranes. Medical Gazette of the North Caucasus 11(1):108 – 110, 2016. doi:10.14300/mnnc.2016.11011.

I. A. Bazikov, V. V. Lukinova, N. I. Malinina, A. N. Maltsev. Study of the mechanisms of intercellular interaction of the niosomal form of the antitumor drug doxorubicin with plasma membranes. The Eurasian Union of Scientists 3(24):34, 2016.

E. I. Diskaeva, O. V. Vecher, I. A. Bazikov, D. S. Vakalov. Particle size analysis of niosomes as a function of temperature. Nanosystems: physics, chemistry, mathematics 9(2):290– 294, 2018. doi:10.17586/2220-8054-2018-9-2-290-294.

V. Y. Rudyak, A. A. Belkin, V. V. Egorov. Effective viscosity coefficient of nanosuspensions. In AIP Conference Proceedings, vol. 1084, pp. 489 – 494. 2008. doi:10.1063/1.3076527.

M. N. Yasin, S. Hussain, F. Malik, et al. Preparation and characterization of chloramphenicol niosomes and comparison with chloramphenicol eye drops (0.5% w/v) in experimental conjunctivitis in albino rabbits. Pakistan journal of pharmaceutical sciences 25(1):117 – 121, 2012.

S. B. Shirsand, G. R. Kumar, G. G. Keshavshetti, et al. Formulation and evaluation of clotrimazole niosomal gel for topical application. Rajiv Gandhi University of Health Sciences Journal of Pharmaceutical Sciences 5(1):32 – 38, 2015.

B. Lu, Y. Huang, Z. Chen, et al. Niosomal nanocarriers for enhanced skin delivery of quercetin with functions of anti-tyrosinase and antioxidant. Molecules 24(12):2322, 2019. doi:10.3390/molecules24122322.