• Anges A. Aminou Moussavou Center for Distributed Power and Electronics Systems, Cape Peninsula University of Technology (Bellville Campus), Department of Electrical Engineering, Symphony Way, PO Box 1906, Bellville 7535, South Africa
  • Atanda K. Raji Center for Distributed Power and Electronics Systems, Cape Peninsula University of Technology (Bellville Campus), Department of Electrical Engineering, Symphony Way, PO Box 1906, Bellville 7535, South Africa
  • Marco Adonis Center for Distributed Power and Electronics Systems, Cape Peninsula University of Technology (Bellville Campus), Department of Electrical Engineering, Symphony Way, PO Box 1906, Bellville 7535, South Africa



Cell efficiency, photovoltaic systems, solar photovoltaic-thermal (PV/T) system, modelling and simulation, power production.


Several strategies have been developed to enhance the performance of a solar photovoltaicthermal (PV/T) system in buildings. However, these systems are limited by the cost, complex structure and power consumed by the pump. This paper proposes an optimisation method conversion strategy that modulates the ratio of thermal to electrical energy from the photovoltaic (PV) cell, to increase the PV/T system’s performance. The design and modelling of a PV cell was developed in MATLAB/Simulink to validate the heat transfer occurring in the PV cell model, which converts the radiation (solar) into heat and electricity. A linear regression equation curve was used to define the ratio of thermal to electrical energy technique, and the behavioural patterns of various types of power (thermal and electrical) as a function of extrinsic cell resistance (Rse). The simulation results show an effective balance of the thermal and electrical power when adjusting the Rse. The strategy to modulate the ratio of thermal to electrical energy from the PV cell may optimise the PV/T system’s performance. A change of Rse might be an effective method of controlling the amount of thermal and electrical energy from the PV cell to support the PV/T system temporally, based on the energy need. The optimisation technique of the PV/T system using the PV cell is particularly useful for households since they require electricity, heating, and cooling. Applying this technique demonstrates the ability of the PV/T system to balance the energy ( thermal and electrical) produced based on the weather conditions and the user’s energy demands.


Download data is not yet available.


N. El Bassam, P. Maegaard, M. L. Schlichting. Chapter six - Energy basics, resources, global contribution and applications. In Distributed Renewable Energies for Off-Grid Communities, pp. 85 – 90. Elsevier, 2013. doi:10.1016/B978-0-12-397178-4.00006-2.

W.-C. Lu. Greenhouse gas emissions, energy consumption and economic growth: a panel cointegration analysis for 16 Asian countries. International journal of environmental research and public health 14(11):1436, 2017. doi:10.3390/ijerph14111436.

A. A. A. Moussavou, M. Adonis, A. K. Raji. Microgrid energy management system control strategy. In 2015 International Conference on the Industrial and Commercial Use of Energy (ICUE), pp. 147 – 154. 2015. doi:10.1109/ICUE.2015.7280261.

A. N. Nunes. Energy changes in Portugal. An overview of the last century. Méditerranée Revue géographique des pays méditerranéens/Journal of Mediterranean geography (130), 2018. doi:10.4000/mediterranee.10113.

A. Stocker, A. Großmann, R. Madlener, M. I. Wolter. Sustainable energy development in Austria until 2020: Insights from applying the integrated model “e3. at”. Energy policy 39(10):6082 – 6099, 2011. doi:10.1016/j.enpol.2011.07.009.

D. Banks, J. Schäffler. The potential contribution of renewable energy in South Africa. Sustainable Energy & Climate Change Project, 2006.

A. Chel, G. Kaushik. Renewable energy technologies for sustainable development of energy efficient building. Alexandria Engineering Journal 57(2):655 – 669, 2018. doi:10.1016/j.aej.2017.02.027.

B. Bøhm. Production and distribution of domestic hot water in selected Danish apartment buildings and institutions. Analysis of consumption, energy efficiency and the significance for energy design requirements of buildings. Energy Conversion and Management 67:152 – 159, 2013. doi:10.1016/j.enconman.2012.11.002.

G. Y. Chuang, Y. M. Ferng. Experimentally investigating the thermal mixing and thermal stripping characteristics in a T-junction. Applied Thermal Engineering 113:1585 – 1595, 2017. doi:10.1016/j.applthermaleng.2016.10.157.

R. Tunstall, D. Laurence, R. Prosser, A. Skillen. Large eddy simulation of a T-Junction with upstream elbow: The role of Dean vortices in thermal fatigue. Applied Thermal Engineering 107:672 – 680, 2016. doi:10.1016/j.applthermaleng.2016.07.011.

J.-H. Kim, J.-T. Kim. The experimental performance of an unglazed PVT collector with two different absorber types. International Journal of Photoenergy 2012, 2012. doi:10.1155/2012/312168.

H. A. Zondag. Flat-plate PV-Thermal collectors and systems: A review. Renewable and Sustainable Energy Reviews 12(4):891 – 959, 2008. doi:10.1016/j.rser.2005.12.012.

Z. Xu, C. Kleinstreuer. Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating. Energy Conversion and Management 87:504 – 512, 2014. doi:10.1016/j.enconman.2014.07.047.

A. H. A. Al-Waeli, M. T. Chaichan, H. A. Kazem, et al. Numerical study on the effect of operating nanofluids of photovoltaic thermal system (PV/T) on the convective heat transfer. Case studies in thermal engineering 12:405 – 413, 2018. doi:10.1016/j.csite.2018.05.011.

P. K. Nagarajan, J. Subramani, S. Suyambazhahan, R. Sathyamurthy. Nanofluids for solar collector applications: A review. Energy Procedia 61:2416 – 2434, 2014. doi:10.1016/j.egypro.2014.12.017.

K. Terashima, H. Sato, T. Ikaga. Development of an environmentally friendly PV/T solar panel. Solar Energy 199:510 – 520, 2020. doi:10.1016/j.solener.2020.02.051.

R. Braun, M. Haag, J. Stave, et al. System design and feasibility of trigeneration systems with hybrid photovoltaic-thermal (PVT) collectors for zero energy office buildings in different climates. Solar Energy 196:39 – 48, 2020. doi:10.1016/j.solener.2019.12.005.

O. Dupre, B. Niesen, S. De Wolf, C. Ballif. Field performance versus standard test condition efficiency of tandem solar cells and the singular case of perovskites/silicon devices. The journal of physical chemistry letters 9(2):446 – 458, 2018. doi:10.1021/acs.jpclett.7b02277.

L. Hernández-Callejo, S. Gallardo-Saavedra, V. Alonso-Gómez. A review of photovoltaic systems: Design, operation and maintenance. Solar Energy 188:426 – 440, 2019. doi:10.1016/j.solener.2019.06.017.

V. Perraki, P. Kounavis. Effect of temperature and radiation on the parameters of photovoltaic modules. Journal of Renewable and Sustainable Energy 8(1):013102, 2016. doi:10.1063/1.4939561.

M. R. Maghami, H. Hizam, C. Gomes, et al. Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews 59:1307 – 1316, 2016. doi:10.1016/j.rser.2016.01.044.

J. Page. Chapter IIA-1 - The Role of Solar-Radiation Climatology in the Design of Photovoltaic Systems. In Practical Handbook of Photovoltaics, pp. 573 – 643. Academic Press, Boston, second edition edn., 2012. doi:10.1016/B978-0-12-385934-1.00017-9.

T. Markvart, L. Castañer (eds.). Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier, 2013. doi:10.1016/B978-1-85617-390-2.X5000-4.

C. Xiao, X. Yu, D. Yang, D. Que. Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells. Solar Energy Materials and Solar Cells 128:427 – 434, 2014. doi:10.1016/j.solmat.2014.06.018.

J.-C. Wang, Y.-L. Su, J.-C. Shieh, J.-A. Jiang. High-accuracy maximum power point estimation for photovoltaic arrays. Solar Energy Materials and Solar Cells 95(3):843 – 851, 2011. doi:10.1016/j.solmat.2010.10.032.

A. R. Jha. Solar Cell Technology and Applications. Auerbach Publications, 2009. doi:10.1201/9781420081787.

F. Fertig, S. Rein, M. Schubert, W. Warta. Impact of junction breakdown in multi-crystalline silicon solar cells on hot spot formation and module performance. In 26th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1168 – 1178. 2011. doi:10.4229/26thEUPVSEC2011-2DO.3.1.

P. Singh, N. M. Ravindra. Temperature dependence of solar cell performance - an analysis. Solar energy materials and solar cells 101:36 – 45, 2012. doi:10.1016/j.solmat.2012.02.019.

J. Zaraket, T. Khalil, M. Aillerie, et al. The Effect of Electrical stress under temperature in the characteristics of PV Solar Modules. Energy Procedia 119:579 – 601, 2017. doi:10.1016/j.egypro.2017.07.083.

J. C. Teo, R. H. G. Tan, V. H. Mok, et al. Impact of partial shading on the pv characteristics and the maximum power of a photovoltaic string. Energies 11(7):1860, 2018. doi:10.3390/en11071860.

A. J. Swart, P. E. Hertzog. Varying percentages of full uniform shading of a PV module in a controlled environment yields linear power reduction. Journal of Energy in Southern Africa 27(3):28 – 38, 2016.

P. Arjyadhara, S. M. Ali, J. Chitralekha. Analysis of solar PV cell performance with changing irradiance and temperature. International Journal of Engineering and Computer Science 2(1):214 – 220, 2013.

P. Löper, D. Pysch, A. Richter, et al. Analysis of the temperature dependence of the open-circuit voltage. Energy Procedia 27:135 – 142, 2012.

C. H. Henry. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. Journal of Applied Physics 51(8):4494 – 4500, 1980. doi:10.1063/1.328272.

G. Trzmiel, D. Głuchy, D. Kurz. The impact of shading on the exploitation of photovoltaic installations. Renewable Energy 153:480 – 498, 2020. doi:10.1016/j.renene.2020.02.010.

A. M. Humada, F. B. Samsuri, M. Hojabria, et al. Modeling of photovoltaic solar array under different levels of partial shadow conditions. In 16th International Power Electronics and Motion Control Conference and Exposition, pp. 461 – 465. 2014. doi:10.1109/EPEPEMC.2014.6980535.

F. Lu, S. Guo, T. M. Walsh, A. G. Aberle. Improved pv module performance under partial shading conditions. Energy Procedia 33:248 – 255, 2013. doi:10.1016/j.egypro.2013.05.065.

L. A. Kosyachenko. Solar Cells - Thin-Film Technologies, chap. Thin-Film Photovoltaics as a Mainstream of Solar Power Engineering, pp. 1 – 40. IntechOpen Limited, London, 2011. doi:10.5772/39070.

D. Kiermasch, L. Gil-Escrig, H. J. Bolink, K. Tvingstedt. Effects of masking on open-circuit voltage and fill factor in solar cells. Joule 3(1):16 – 26, 2019. doi:10.1016/j.joule.2018.10.016.

H. A. Koffi, A. A. Yankson, A. F. Hughes, et al. Determination of the series resistance of a solar cell through its maximum power point. African Journal of Science, Technology, Innovation and Development 12(6):699 – 702, 2020. doi:10.1080/20421338.2020.1731073.

M. Wolf, H. Rauschenbach. Series resistance effects on solar cell measurements. Advanced Energy Conversion 3(2):455 – 479, 1963. doi:10.1016/0365-1789(63)90063-8.

P. G. Kale, K. K. Singh, C. Seth. Modeling effect of dust particles on performance parameters of the solar PV module. In 2019 Fifth International Conference on Electrical Energy Systems, pp. 1 – 5. 2019. doi:10.1109/ICEES.2019.8719298.

A. Hussain, A. Batra, R. Pachauri. An experimental study on effect of dust on power loss in solar photovoltaic module. Renewables: Wind, Water, and Solar 4(1):9, 2017. doi:10.1186/s40807-017-0043-y.

K. Dastoori, G. Al-Shabaan, M. Kolhe, et al. Charge measurement of dust particles on photovoltaic module. In 8th International Symposium on Advanced Topics in Electrical Engineering, pp. 1 – 4. 2013. doi:10.1109/ATEE.2013.6563411.

R. Vaillon, O. Dupré, R. B. Cal, M. Calaf. Pathways for mitigating thermal losses in solar photovoltaics. Scientific reports 8:13163, 2018.

M. Hammami, S. Torretti, F. Grimaccia, G. Grandi. Thermal and performance analysis of a photovoltaic module with an integrated energy storage system. Applied Sciences 7(11):1107, 2017. doi:10.3390/app7111107.

R. Masoudi Nejad. A survey on performance of photovoltaic systems in iran. Iranian (Iranica) Journal of Energy & Environment 6(2):77 – 85, 2015. doi:10.5829/idosi.ijee.2015.06.02.01.

J. A. Duffie, W. A. Beckman. Solar Engineering of Thermal Processes. Wiley, New York, 1991.

P. Singh, N. Ravindra. Analysis of series and shunt resistance in silicon solar cells using single and double exponential models. Emerging Materials Research 1:33 – 38, 2012. doi:10.1680/emr.11.00008.




How to Cite

Aminou Moussavou, A. A., Raji, A. K., & Adonis, M. (2021). STRATEGIC MODULATION OF THERMAL TO ELECTRICAL ENERGY RATIO PRODUCED FROM PV/T MODULE. Acta Polytechnica, 61(2), 313–323.