CO2 power cycle chemistry in the CV Řež experimental loop

Authors

  • Jan Berka Centrum výzkumu Řež s.r.o., Husinec-Řež, Hlavní 130, Řež, Czech Republic; University of Chemistry and Technology Prague, Faculty of Environmental Technology, Department of Gaseous and Solid Fuels and Air Protection, Technická 1905, Prague 6, Czech Republic
  • Jakub Vojtěch Ballek Centrum výzkumu Řež s.r.o., Husinec-Řež, Hlavní 130, Řež, Czech Republic; University of Chemistry and Technology Prague, Faculty of Environmental Technology, Department of Gaseous and Solid Fuels and Air Protection, Technická 1905, Prague 6, Czech Republic
  • Ladislav Velebil Centrum výzkumu Řež s.r.o., Husinec-Řež, Hlavní 130, Řež, Czech Republic
  • Eliška Purkarová University of Chemistry and Technology Prague, Faculty of Environmental Technology, Department of Gaseous and Solid Fuels and Air Protection, Technická 1905, Prague 6, Czech Republic
  • Alice Vagenknechtová University of Chemistry and Technology Prague, Faculty of Environmental Technology, Department of Gaseous and Solid Fuels and Air Protection, Technická 1905, Prague 6, Czech Republic
  • Tomáš Hlinčík University of Chemistry and Technology Prague, Faculty of Environmental Technology, Department of Gaseous and Solid Fuels and Air Protection, Technická 1905, Prague 6, Czech Republic

DOI:

https://doi.org/10.14311/AP.2021.61.0504

Keywords:

supercritical carbon dioxide, sc-CO2, power cycle chemistry, materials, purification, purity control

Abstract

Power cycles using carbon dioxide in a supercritical state (sc-CO2) can be used in both the nuclear and non-nuclear power industry. These systems are characterized by their advantages over steam power cycles, e. g., the sc-CO2 turbine is more compact than the steam turbine with a similar performance. The parameters and lifespan of the system are influenced by the purity of the CO2 in the circuit, especially the admixtures, such as O2, H2O, etc., cause the enhanced structural materials to degrade. Therefore, gas purification and purity control systems for the sc-CO2 power cycles should be proposed and developed. The inspiration for the proposal of these systems could stem from the gas, especially the CO2-cooled nuclear reactors operation. The first information concerning the CO2 and sc-CO2 power cycle chemistry was gathered in the first period of the project and it is summarized in the paper.

References

Department of Energy. SCO2 power cycles for fossil fuels. [2020-04-03], https://www.energy.gov/sco2-power-cycles/sco2-power-cycles-fossil-fuels.

E. G. Feher. The supercritical thermodynamic power cycle. Energy Conversion 8(2):85–90, 1968. https://doi.org/10.1016/0013-480(68)90105-8.

G. Sodeifian, N. S. Ardestani, S. A. Sajadian, S. Ghorbandoost. Application of supercritical carbon dioxide to extract essential oil from Cleome coluteoides Boiss: Experimental, response surface and grey wolf optimization methodology. The Journal of Supercritical Fluids 114:55–63, 2016. https://doi.org/10.1016/j.supflu.2016.04.006.

G. Sodeifian, S. A. Sajadian, N. S. Ardestani. Optimization of essential oil extraction from Launaea acanthodes Boiss: Utilization of supercritical carbon dioxide and cosolvent. The Journal of Supercritical Fluids 116:46–56, 2016. https://doi.org/10.1016/j.supflu.2016.05.015.

G. Sodeifian, S. A. Sajadian, N. S. Ardestani. Determination of solubility of Aprepitant (an antiemetic drug for chemotherapy) in supercritical carbon dioxide: Empirical and thermodynamic models. The Journal of Supercritical Fluids 128:102–111, 2017. https://doi.org/10.1016/j.supflu.2017.05.019.

G. Sodeifian, F. Razmimanesh, S. A. Sajadian. Solubility measurement of a chemotherapeutic agent (Imatinib mesylate) in supercritical carbon dioxide: Assessment of new empirical model. The Journal of Supercritical Fluids 146:89 –99, 2019. https://doi.org/10.1016/j.supflu.2019.01.006.

G. Sodeifian, S. A. Sajadian, S. Daneshyan. Preparation of Aprepitant nanoparticles (efficient drug for coping with the effects of cancer treatment) by rapid expansion of supercritical solution with solid cosolvent (RESS-SC). The Journal of Supercritical Fluids 140:72–84, 2018. https://doi.org/10.1016/j.supflu.2018.06.009.

A. Ameri, G. Sodeifian, S. A. Sajadian. Lansoprazole loading of polymers by supercritical carbon dioxide impregnation: Impacts of process parameters. The Journal of Supercritical Fluids 164:104892, 2020. https://doi.org/10.1016/j.supflu.2020.104892.

V. Dostal, P. Hejzlar, M. J. Driscoll. The supercritical carbon dioxide power cycle: comparison to other advanced power cycles. Nuclear Technology 154(3):283– 301, 2006. https://doi.org/10.13182/NT06-A3734.

K. Brun, P. Friedman, R. Dennis. Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Bases Power Cycles, chap. 15 Research and development: Essentials, efforts, and future trends. Woodhead Publishing, Duxford, 2017.

M. Li, et al. The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries. Applied Thermal Engineering 126:255–275, 2017. https://doi.org/10.1016/j.applthermaleng.2017.07.173.

K. Brun, P. Friedman, R. Dennis. Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Bases Power Cycles, chap. 7 Turbomachinery. Woodhead Publishing, Duxford, 2017.

R. Allam, et al. The oxy-fuel, supercritical CO2 Allam cycle: new cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emissions. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 3B: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Supercritical CO2 Power Cycles; Wind Energy. 2014. V03BT36A016, https://doi.org/10.1115/GT2014-26952.

Environmental Protection Agency (EPA). Standards of performance for greenhouse gas emissions from new, modified, and reconstructed stationary sources: electric utility generating units, 2015.

M. Perschilli, et al. Supercritical CO2 power cycle developments and commercialization: Why sCO2 can displace steam. power-gen india & central asia, 2012. [2020-04-03], http://www.echogen.com/documents/why-sco2-can-displace-steam.pdf.

PRIS – power reactor information system. operational & long-term shutdown reactors. [2020-04-03], https://pris.iaea.org/PRIS/WorldStatistics/OperationalReactorsByType.aspx.

K. Feik, J. Kmošena. Jadrová elektráreň A1 v kocke. Slovakia, Bratislava, 2010.

Electric Power Research Institute (EPRI). Performance and economic evaluation of supercritical CO2 power cycle coal gasification plant, 2014.

T. Hudský. Special purification and purity control methods for advanced nuclear reactors. Diploma thesis, UCT Prague, 2015.

C. Dang, K. Hoshika, E. Hihara. Effect of lubricating oil on the flow and heat-transfer characteristics of supercritical carbon dioxide. International Journal of Refrigeration 35(5):1410–1417, 2012. https://doi.org/10.1016/j.ijrefrig.2012.03.015.

W. Flaig., R. Mertz, J. Starflinger. Setup of the supercritical CO2 test facility “SCARLETT” for basic experimental investigations of a compact heat exchanger for an innovative decay heat removal system. Journal of Nuclear Engineering and Radiation Science 4(3):031004, 2018. https://doi.org/10.1115/1.4039595.

Cast steel y type strainer. [2020-04-03], http://www.pmtengineers.com/images/product/cast_steel_y_type_strainer.jpg.

B. Hatala. Katalog JE A1 (chemia). Internal VUJE report. Slovakia, Bratislava, 2019.

J. Berka, et al. New experimental device for VHTR structural material testing and helium coolant chemistry investigation – High Temperature Helium Loop in NRI Řež. Nuclear Engineering and Design 251:203–207, 2012. https://doi.org/10.1016/j.nucengdes.2011.10.045.

Downloads

Published

2021-08-31

Issue

Section

Articles