The impact of the air temperature on measuring the zenith angle during the year in the ground layer of the atmosphere for the needs of engineering surveying

Authors

  • Tomáš Suk Czech Technical University in Prague, Faculty of Civil Engineering, Department of Special Geodesy, Thákurova 7, 160 00 Prague, Czech Republic https://orcid.org/0000-0003-1039-8211
  • Martin Štroner Czech Technical University in Prague, Faculty of Civil Engineering, Department of Special Geodesy, Thákurova 7, 160 00 Prague, Czech Republic https://orcid.org/0000-0003-0070-7172

DOI:

https://doi.org/10.14311/AP.2021.61.0476

Keywords:

Refraction, vertical temperature gradient, zenith angle, beam path, vertical shifts.

Abstract

This paper presents the results of over a year-long experiment dealing with a temperature measurement to calculate the theoretical effect of the atmosphere on the measured zenith angle in engineering surveying. The measurements were performed to determine the accurate and specific temperatures (temperature gradients), which can be recorded in different seasons in the low level of the atmosphere (up to 2 m above the ground, where most Engineering Surveying measurements take place) for the geographical area of Central Europe - specifically the Czech Republic. A numerical model was then applied to the resulting determined temperature gradients to calculate the path of the beam passing through an inhomogeneous atmosphere. From these values, the apparent vertical shifts caused by refraction in a given environment and time were finally determined.

Downloads

Download data is not yet available.

References

J. Braun, M. Štroner. Geodetic measurement of longitudinal displacements of the railway bridge.

J. Braun, H. Fladrova, K. Prager. Comparison of different measurement methods of crane runway. In Advances and Trends in Geodesy, Cartography and Geoinformatics II: Proceedings of the 11th International Scientific and Professional Conference on Geodesy, Cartography and Geoinformatics, pp. 3 – 9. 2020. https://doi.org/10.1201/9780429327025-2.

J. Bures, D. Bartonek, M. Kalina, O. Svabensky. Security geodetic monitoring of structures. In 7th International Conference on Cartography and GIS, pp. 874 – 879. Bulgarian Cartographic Association, Bulgaria, 2018.

J. Bureš, L. Bárta, O. Švábenský. Contributions to International Conferences on Engineering Surveying, chap. Influence of External Conditions in Monitoring of Building Structures, pp. 223 – 235. Springer, 2021. https://doi.org/10.1007/978-3-030-51953-7_19.

M. Hauf. Technický pruvodce: Geodezie. SNTL - Nakladatelství technické literatury, 1982.

L. Hradilek. Refraction in Trigonometric and Three-Dimensional Terrestrial Networks. The Canadian Surveyor 26(1):59 – 70, 1972. https://doi.org/10.1139/tcs-1972-0006.

L. Hradilek. Trigonometric levelling and spatial triangulation in mountain regions. Bulletin Géodésique 87(1):33 – 52, 1968. https://doi.org/10.1007/BF02530312.

R. Urban, O. Michal. Development deflection of prestressed concrete bridge. In 15th International Multidisciplinary Scientific GeoConference SGEM 2015, pp. 203 – 210. STEF92 Technology Ltd., Sofia, Bulgaria, 2015. https://doi.org/10.5593/SGEM2015/B22/S9.025.

Š. Rákay, K. Bartoš, K. Pukanská. The influence of refraction on determination of position of objects under water using total station. In Advances and Trends in Geodesy, Cartography and Geoinformatics, pp. 95 – 100. 2018. https://doi.org/10.1201/9780429505645-16.

T. Kremen. Refrakcní koeficient a gaussova hodnota k = 0,1306. Geodetický a kartografický obzor 64(8):161 – 169, 2018.

C. Hirt, S. Guillaume, A. Wisbar, et al. Monitoring of the refraction coefficient in the lower atmosphere using a controlled setup of simultaneous reciprocal vertical angle measurements. Journal of Geophysical Research: Atmospheres 115(D21), 2010.

T. J. Kukkamaki. Ober die nivellitische Refraktion. Publication of the Finnish Geodetic Institute, Helsinki, 1938.

S. R. Holdahl. Removal of refraction errors in geodetic leveling. In Symposium - International Astronomical Union, vol. 89, pp. 305 – 319. 1979.

P. V. Angus-Leppan. Use of meteorological measurements for computing refractional effects - a review. In Symposium - International Astronomical Union, vol. 89, pp. 165 – 178. 1979. https://doi.org/10.1017/S0074180900065979.

D. Gaifillia, V. Pagounis, M. Tsakiri, V. Zacharis. Empirical modelling of refraction error in trigonometric heighting using meteorological parameters. Journal of Geosciences and Geomatics 4(1):8 – 14, 2016.

A. S. Monin, A. M. Obukhov. Basic laws of turbulent mixing in the atmosphere near the ground. Academiia Nauk SSSR, Geofizicheskii institut 24:163 – 187, 1954.

F. K. Brunner. Systematic and random atmospheric refraction effects in geodetic levelling. In Proc. of Second International Symposium on Problems Related to the Redefinition of North American Vertical Geodetic Networks, pp. 691 – 703. 1980.

A. Reiterer. Modeling atmospheric refraction influences by optical turbulences using an image-assisted total station. ZFV - Zeitschrift für Geodäsie, Geoinformation und Landmanagement 137(3):156 – 165, 2012.

B. Böckem, P. Flach, A. Weiss, M. Hennes. Refraction influence analysis and investigations on automated elimination of refraction effects on geodetic measurements. In Proc. IMEKO 2000. 2000.

H. Ingensand. Concepts and solutions to overcome the refraction problem in terrestrial precision measurement. Geodezija ir Kartografija 34(2):61 – 65, 2008. https://doi.org/10.3846 1392-1541.2008.34.61-65.

S. Kyle, S. Robson, L. MacDonald, M. Shortis. Compensating for the effects of refraction in photogrammetric metrology. In Proceedings of 14th International Workshop on Accelerator Alignment. 2016.

H. Sirucková. Experimental levelling at the interface of optical environments. Acta Polytechnica 56(2):138 – 146, 2016. https://doi.org/10.14311/AP.2016.56.0138.

M. Frk, Z. Rozsívalová. Overview, accuracy and sensitivity of temperature sensors in practice. Elektrorevue 14(4):55–1 – 55–8, 2012.

Návod na použití a kalibracní protokol. Tech. rep., Sensit, Rožnov pod Radhoštem, 2019.

J. A. Kravcov, J. I. Orlov. Geometriceskaja optika neodnorodnych sred. Moskva: Nauka, 1980.

A. Mikš, J. Pospíšil. Pocítacová simulace vlivu atmosféry na geodetická merení. Stavební obzor: odborný mesíčník 7:220 – 225, 1998.

M. Štroner, J. Pospíšil, T. Kremen, V. Smítka. Geodetická merení pri požární zkoušce na experimentálním objektu v Mokrsku. Ceské vysoké ucení technické v Praze, 2008.

M. Štroner. Metody výpoctu indexu lomu vzduchu. Jemná mechanika a optika 7 -8:224 – 228, 2000.

F. Dvořáček. Interpretation and evaluation of procedures for calculating the group refractive index of air by ciddor and hill. In 18th International Multidisciplinary Scientific GeoConferences SGEM 2018 - Informatics, Geoinformatics and Remote Sensing, vol. 18, pp. 837 – 844.

Downloads

Published

2021-06-30

How to Cite

Suk, T., & Štroner, M. (2021). The impact of the air temperature on measuring the zenith angle during the year in the ground layer of the atmosphere for the needs of engineering surveying. Acta Polytechnica, 61(3), 476–488. https://doi.org/10.14311/AP.2021.61.0476

Issue

Section

Articles