ADAPTIVE WAVELETS SLIDING MODE CONTROL FOR A CLASS OF SECOND ORDER UNDERACTUATED MECHANICAL SYSTEMS

Authors

  • Fares Nafa Boumerdes university, Faculté de Technologie, Laboratoire d’Ingénierie des Sytémes et des Telecommunication, Cité FranzFanon, Boumerdes, Algeria
  • Aimad Boudouda Boumerdes university, Faculté de Technologie, Laboratoire d’Ingénierie des Sytémes et des Telecommunication, Cité FranzFanon, Boumerdes, Algeria
  • Billel Smaani Laboratoire Hyperfréquences et Semiconducteurs Constantine 1 university, B.P. 325 Route Ain El Bey, Constantine, Algeria

DOI:

https://doi.org/10.14311/AP.2021.61.0350

Keywords:

Adaptive, gradient descent, pendubot, sliding mode control, wavelets.

Abstract

The control of underactuated mechanical systems (UMS) remains an attracting field where researchers can develop their control algorithms. To this date, various linear and nonlinear control techniques using classical and intelligent methods have been published in literature. In this work, an adaptive controller using sliding mode control (SMC) and wavelets network (WN) is proposed for a class of second-order UMS with two degrees of freedom (DOF).
This adaptive control strategy takes advantage of both sliding mode control and wavelet properties. In the main result, we consider the case of un-modeled dynamics of the above-mentioned UMS, and we introduce a wavelets network to design an adaptive controller based on the SMC. The update algorithms are directly extracted by using the gradient descent method and conditions are then settled to achieve the required convergence performance.
The efficacy of the proposed adaptive approach is demonstrated through an application to the pendubot.

References

X. Xin, Y. Liu. Control Design and Analysis for Underactuated Robotic Systems. Springer- erlag, London,UK, 2014. doi:10.1007/978-1-4471-6251-3.

L. Birglen, T. Laliberté, C. M. Gosselin. Underactuated Robotic Hands. Springer-Verlag, Berlin, Germany, 2008. doi:10.1007/978-3-540-77459-4.

P. Masarati, M. Morandini, A. Fumagalli. Control constraint of underactuated aerospace systems. Journal of Computational and Nonlinear Dynamics 9(2):395–401, 2014. doi:10.1115/1.4025629.

D. K. Duc, J. Pan. Control of Ships and Underwater Vehicles, Design for Underactuated and Nonlinear Marine Systems,Advances in Industrial Control. first edition. Springer-Verlag, London, 2009. doi:10.1007/978-1-84882-730-1.

S. Krafes, Z. Chalh, A. Saka. Review on the control of second order underactuated mechanical systems. Complexity 2018. doi:10.1155/2018/9573514.

L. Yang, Y. Hongnian. A survey of underactuated mechanical systems. IET Control Theory&Applications 7(7):921–935, 2013. doi:10.1049/iet-cta.2012.0505.

M. Reyhanoglu, A. Schaft, N. Mcclamroch, I. Kolmanovsky. Dynamics and control of a class of underactuated mechanical systems. IEEE Transaction on Automatic Control 44(9):1663–1671, 1999. doi:0.1109/9.788533.

D. Huynh, V. Dat, T. Nguyen. Application of fuzzy algorithm in optimizing hierarchical sliding mode control for pendubot system. Robotica and Management 22(2):2–12, 2017. doi:10.1109/fuzz.2002.1005070.

M. Spong. Lecture notes in control and information sciences. In Control Problems in Robotics and Automation, chap. Underactuated Mechanical Systems. Springer, Berlin, Heidelberg, 1998. doi:10.1007/BFb0015081.

X. Huang, A. Ralescu, H. Gao. A survey on the application of fuzzy systems for underactuated systems. Journal of Systems and Control Engineering 233(3):217–244, 2018. doi:10.1177/0959651818791027.

M. Rehan, M. Reyhanoglu. Control of rolling disk motion on an arbitrary smooth surface. IEEE Control Systems Letters 2(3):357–362, 2018. doi:10.1109/LCSYS.2018.2838528.

A. Choukchou-Braham, B. Cherki, M. Djemai, K. Busawon. Analysis and Control of Underactuated Mechanical Systems. Springer International Publishing, Cham, Switzerland, 2014. doi:10.1007/978-3-319-02636-7.

I. Chawla, A. Singla. Real-time control of a rotary inverted pendulum using robust lqr-based anfis controller. International Journal of Nonlinear Sciences and Numerical Simulation 19(3-4):379–389, 2018. doi:10.1515/ijnsns-2017-0139.

M. Keshmiri, A. Singla. Modeling and control of ball and beam system using model based and non-model based control approaches. International Journal On Smart Sensing and Intelligent Systems 5(1):14–35, 2012. doi:10.21307/ijssis-2017-468.

C.Aguilar-Avelar, J. Moreno-Valenzuela. New feedback linearization-based control for arm trajectory tracking of the furuta pendulum. IEEE/ASME Transactions on Mechatronics 21(2):638 – 648, 2016. doi:10.1109/TMECH.2015.2485942.

T. Taniguchi, M. Sugeno. Piecewisemulti-linear model based control for tora system via feedback linearization. Proceedings of the International MultiConference of Engineers and Computer Scientists 2018.

R. Chanchareon, V. Sangveraphunsiri, S. Chantranuwathana. Tracking control of an inverted pendulum using computed feedback linearization technique. IEEE International Conference on Robotics, Automation and Mechatronics 2006. doi:10.1109/RAMECH.2006.252680.

L. Hsu, T. Oliveira, J. Cunha, L. Yan. Adaptive unit vector control of multivariable systems using monitoring functions. International Journal of Robust and Nonlinear Control 29(3):583–600, 2019. doi:10.1002/rnc.4253.

T. Oliveira, J. Cunha, L. Hsu. Li s., yu x., fridman l., man z., wang x. (eds). In Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications. Studies in Systems, Decision and Control, chap. Adaptive Sliding Mode Control Based on the Extended Equivalent Control Concept for Disturbances with Unknown Bounds. Springer, Cham, 2018. doi:10.1007/978-3-319-62896-7$_$6.

C. Edwards, S. Spurgeon. Sliding Mode Control: Theory and Applications. Taylor and Francis, London, UK, 1998.

J.-X. Xu, Z.-Q. Guo, T. Lee. A synthesized integral sliding mode controller for an underactuated unicycle. 11th International Workshop on Variable Structure Systems (VSS),Mexico City, 2010 pp. 352–357, 2010. doi:10.1109/VSS.2010.5545132.

I. Shah, F. Ur Rehman. Smooth second order sliding mode control of a class of underactuated mechanical system. IEEE Access, 2018 6:7759–7771, 2018. doi:10.1109/ACCESS.2018.2806568.

H. Cho, G. Kerschen, T. Oliveira. Adaptive smooth control for nonlinear uncertain systems. Nonlinear Dyn 99 p. 2819–2833, 2020. doi:10.1007/s11071-019-05446-z.

T. Oliveira, V. Rodrigues, L. Fridman. Generalized model reference adaptive control by means of global hosm differentiators. IEEE Transactions on Automatic Control 5(64):2053–2060, 2020. doi:10.1109/TAC.2018.2862466.

S. Ramos-Paz, F. Ornelas-Tellez, A. G. Loukianov. Nonlinear optimal tracking control in combination with sliding modes: Application to the pendubot. in Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC),Mexico 6:1–6, 2017. doi:10.1109/ROPEC.2017.8261619.

F. Nafa, S. Labiod, H. Chekireb. Direct adaptive fuzzy sliding mode decoupling control for a class of under actuated mechanical systems. Turk J Electr Eng Co 21:1615–1630, 2013. doi:10.3906/elk-1112-17.

S. Labiod, T. Guerra. Direct adaptive fuzzy control for a class of mimo nonlinear system. International Journal of Systems Science 38(8):665–675, 2007. doi:10.2307/2001373.

S. Mallat. Multiresolution approximation and wavelet orthonormal base of L2 ( R). Transactions of the American Mathematical Society 315(1):69–87, 1989.

I. Daubechies. Ten lectures on wavelets. SIAM,Philadelphia, Pennsylvania, USA 1992.

J. Xu, Y. Tan. Nonlinear adaptive wavelet control using constructive wavelet networks. IEEE Transactions on Neural Networks 18(1):115–127, 2007. doi:10.1109/TNN.2006.886759.

T. Kugarajah, Q. Zhang. Multidimensional wavelet frames. IEEE Transaction on Neural Networks 6(6):1552–1556, 1995. doi:10.1109/72.471353.

A. Stephen, H. Wei. New class of wavelet network for nonlinear system identification. IEEE Transaction on Neural Networks 16(4):862–874, 2005. doi:10.1109/TNN.2005.849842.

H. R. Karimi, B. Lohmann, B. Moshiri, P. Maralani. Wavelet-based identification and control design for a class of nonlinear systems. International Journal of Wavelets,Multiresolution and Information Processing 4(1):213–226, 2006. doi:10.1142/S0219691306001178.

B. Chen, Y. Cheng. Adaptive wavelet network control design for nonlinear systems. Proceedings of 35th IEEE Conference on Decision and Control 3(6):3224–3229, 1997. doi:10.1109/CDC.1996.573635.

M. Zekri, S. Sadri, F. Sheikholeslam. Adaptive fuzzy wavelet network control design for nonlinear systems. Fuzzy Sets and Systems 159(20):2668–2695, 2008. doi:10.1016/j.fss.2008.02.008.

R. Olfati-Saber. Normal forms for underactuated mechanical systems with symmetry. IEEE Transaction on Automatic Control 47(2):305–308, 2002. doi:10.1109/9.983365.

J. Slotine, W. Li. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ,USA, 1991.

R. Sanner, J. Slotine. Structurally dynamic wavelet networks for adaptive control of robotic systems. International Journal of Control 70(3):405–421, 1998. doi:10.1080/002071798222307.

B.-S. Chen, Y.-M. Cheng. Adaptive wavelet network control design for nonlinear systems. Proceedings of 35th IEEE Conference on Decision and Control, Kobe, Japan 3:3224–3229, 1996. doi:10.1109/CDC.1996.573635.

L.-X. Wang. Adaptive Fuzzy Systems and Control : Design and Stability Analysis. Prentice-Hall, Englewood Cliffs, NJ,USA, 1994.

M. Gulan, M. Salaj, B. Rohal’-Ilkiv. Achieving an equilibrium position of pendubot via swing–up and stabilizing model predictive control. Journal of Electrical Engineering 65(6):356–363, 2014. doi:10.2478/jee-2014-0058.

Downloads

Published

2021-04-30

Issue

Section

Articles