Corn starch doped with sodium iodate as solid polymer electrolytes for energy storage applications

Authors

  • Fatin Farhana Awang Universiti Malaysia Terengganu, Faculty of Science and Marine Environment, Ionic State Analysis (ISA) Laboratory, Advanced Nano-Materials (ANoMa) Research Group, 21030 Kuala Nerus, Terengganu, Malaysia
  • Mohd Faiz Hassan Universiti Malaysia Terengganu, Faculty of Science and Marine Environment, Ionic State Analysis (ISA) Laboratory, Advanced Nano-Materials (ANoMa) Research Group, 21030 Kuala Nerus, Terengganu, Malaysia
  • Khadijah Hilmun Kamarudin Universiti Malaysia Terengganu, Faculty of Science and Marine Environment, Ionic State Analysis (ISA) Laboratory, Advanced Nano-Materials (ANoMa) Research Group, 21030 Kuala Nerus, Terengganu, Malaysia

DOI:

https://doi.org/10.14311/AP.2021.61.0497

Keywords:

biodegradable polymers, polymer membranes, solid polymer electrolytes, sodium salt, electrical properties

Abstract

The concern about environmental problems has inspired a of energy storage devices from natural sources. In this study, solid polymer electrolyte (SPE) films made from corn starch doped with different compositions of sodium iodate (NaIO3) were prepared via the solution casting technique. The effect of dopants on the structure, morphology and electrical properties of SPE films was analysed using X-Ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) analysis. From the XRD, it shows that the amorphous state would influence the conductivity values of SPE films. Then, the SEM observations revealed that the films seem to be rough, porous and having branch structure, which may affect the conductivity of SPE films. The maximum conductivity of SPE film is obtained from 3 wt.% of NaIO3 with a value of 1.08 × 10−4 Scm−1 at room temperature (303K). From the results, this SPE is proposed to have a great potential in future energy storage applications.

References

A. Arya, A. L. Sharma. Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. Journal of Materials Science: Materials in Electronics 29(20):17903–17920, 2018. https://doi.org/10.1007/s10854-018-9905-3.

G. Dave, D. K. Kanchan. Dielectric relaxation and modulus studies of PEO-PAM blend based sodium salt electrolyte system. Indian Journal of Pure & Applied Physics 56:978–988, 2018.

M. S. Mustafa, H. O. Ghareeb, S. B. Aziz, et al. Electrochemical characteristics of glycerolized PEO-based polymer electrolytes. Membranes 10(6):116, 2020. https://doi.org/10.3390/membranes10060116.

M. Johnsi, S. A. Suthanthiraraj. Compositional effect of ZrO2 nanofillers on a PVDF-co-HFP based polymer electrolyte system for solid state zinc batteries. Chinese Journal of Polymer Science 34(3):332–343, 2016. https://doi.org/10.1007/s10118-016-1750-3.

M. F. Hassan, N. Noruddin. The effect of lithium perchlorate on Poly (sodium 4-styrenesulfonate): Studies based on morphology, structural and electrical conductivity. Materials Physics and Mechanics 36:8–17, 2018. https://doi.org/10.18720/MPM.3612018_2.

A. Chandra, A. Chandra, R. S. Dhundhel. Electrolytes for sodium ion batteries: A short review. Indian Journal of Pure & Applied Physics 58:113–119, 2020.

S. K. Deraman, N. S. Mohamed, R. H. Y. Subban. Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl (chloride)- ammonium triflate -ionic liquid for proton battery. International Journal Electrochemical Science 6(1):1459–1468, 2013.

M. F. Hassan, H. K. Ting. Physical and electrical analyses of solid polymer electrolytes. ARPN Journal of Engineering and Applied Sciences 13:8189–8196, 2018.

C.-W. Kuo, W.-B. Li, P.-R. Chen, et al. Effect of plasticizer and lithium salt concentration in PMMA based composite polymer electrolytes. International Journal Electrochemical Science 8:5007–5021, 2013.

S. G. Rathod, R. F. Bhajantri, V. Ravindhrachary, et al. Influence of transport parameters on conductivity of lithium perchlorate-doped poly(vinyl alcohol)/chitosan composites. Journal of Elastomers & Plastics 48(5):442–455, 2016. https://doi.org/10.1177/0095244315580457.

B. Jinisha, K. Anilkumar, M. Manoj, et al. Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer. Electrochimica Acta 235:210–222, 2017. https://doi.org/10.1016/j.electacta.2017.03.118.

S. B. Aziz, Z. H. Z. Abidin. Electrical conduction mechanism in solid polymer electrolytes: New concepts to arrhenius equation. Journal of Soft Matter pp. 1–8, 2013. https://doi.org/10.1155/2013/323868.

A. S. Samsudin, M. A. Saadiah. Ionic conduction study of enhanced amorphous solid bio-polymer electrolytes based carboxymethyl cellulose doped NH4Br. Journal of Non-Crystalline Solids 497:19–29, 2018. https://doi.org/10.1016/j.jnoncrysol.2018.05.027.

N. H. Ahmad, M. I. N. Isa. Ionic conductivity and electrical properties of carboxylmethylcellulose - NH4Cl solid polymer electrolytes. Journal of Engineering Science and Technology 11(6):839–847, 2016.

S. Çavuş, E. Durgun. Poly(vinyl alcohol) based polymer gel electrolytes: Investigation on their conductivity and characterization. Acta Physica Polonica A 129(4):621–624, 2016. https://doi.org/10.12693/APhysPolA.129.621.

M. F. Hassan, F. F. Awang, N. S. N. Azimi, C. K. Sheng. Starch/MgSO4 solid polymer electrolyte for zinc carbon batteries and its application in a simple circuit. Journal of Sustainability Science and Management 15(8):1–8, 2020. https://doi.org/10.46754/jssm.2020.12.001.

S. B. Aziz. Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iranian Polymer Journal 22(12):877–883, 2013. https://doi.org/10.1007/s13726-013-0186-7.

D. Hambali, Z. Zainnuddin, I. Supa’at, Z. Osman. Studies of ion transport and electrochemical properties of plasticized composite polymer electrolytes. Sains Malaysiana 45(11):1697–1705, 2016.

A. K. S. P. Chandra Sekhar, P. Naveen Kumar. Effect of plasticizer on conductivity and cell parameters of (PMMA+NaClO4) polymer electrolyte system. IOSR Journal of Applied Physics (IOSR-JAP) 2(4):1–6, 2012. https://doi.org/10.9790/4861-0240106.

S. B. Aziz, O. G. Abdullah, M. A. Rasheed, H. M. Ahmed. Effect of high salt concentration (HSC) on structural, morphological, and electrical characteristics of chitosan based solid polymer electrolytes. Polymers 9(6), 2017. https://doi.org/10.3390/polym9060187.

C. L. Luchese, P. Benelli, J. C. Spada, I. C. Tessaro. Impact of the starch source on the physicochemical properties and biodegradability of different starch-based films. Journal of Applied Polymer Science 135(33):1–11, 2018. https://doi.org/10.1002/app.46564.

B. Chatterjee, N. Kulshrestha, P. N. Gupta. Preparation and characterization of lithium ion conducting solid polymer electrolytes from biodegradable polymers starch and PVA. International Journal of Engineering Research and Applications 5:116–131, 2015.

R. Alves, M. M. Silva. The influence of glycerol and formaldehyde in gelatin-based polymer electrolytes. Molecular Crystals and Liquid Crystals 591(1):64–73, 2014. https://doi.org/10.1080/15421406.2013.822739.

R. Alves, J. P. Donoso, C. J. Magon, et al. Solid polymer electrolytes based on chitosan and europium triflate. Journal of Non-Crystalline Solids 432:307–312, 2016. https://doi.org/10.1016 j.jnoncrysol.2015.10.024.

H. M. A. Herath, V. A. Seneviratne. Electrical and thermal studies on sodium based polymer electrolyte. Procedia Engineering 215:124–129, 2017. https://doi.org/10.1016/j.proeng.2018.02.089.

S. Brutti, et al. Ionic liquid electrolytes for room temperature sodium battery systems. Electrochimica Acta 306:317–326, 2019. https://doi.org/10.1016/j.electacta.2019.03.139.

P. K. Nayak, L. Yang, W. Brehm, P. Adelhelm. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew Chem International Ed England 57(1):102–120, 2018. https://doi.org/10.1002/anie.201703772.

J. Mei, Y. Yuan, Y. Wu, Y. Li. Characterization of edible starch-chitosan film and its application in the storage of Mongolian cheese. International Journal Biological Macromolecules 57:17–21, 2013. https://doi.org/10.1016/j.ijbiomac.2013.03.003.

M. F. Hassan, S. Z. M. Yusof. Poly(acrylamide-coacrylic acid)-zinc acetate polymer electrolytes: Studies based on structural and morphology and electrical spectroscopy. Microscopy Research 02(02):30–38, 2014. https://doi.org/10.4236/mr.2014.22005.

F. F. Awang, K. H. Kamarudin, M. F. Hassan. Effect of sodium bisulfite on corn starch solid polymer electrolyte. Malaysian Journal of Analytical Science 25(2):224–233, 2021.

S. B. Aziz, M. H. Hamsan, W. O. Karim, et al. Study of impedance and solid-state double-layer capacitor behavior of proton (H+)-conducting polymer blend electrolyte-based CS:PS polymers. Ionics 26(9):4635–4649, 2020. https://doi.org/10.1007/s11581-020-03578-6.

N. Angulakshmi, D. J. Yoo, K. S. Nahm, et al. MgAl2SiO6-incorporated poly(ethylene oxide)-based electrolytes for all-solid-state lithium batteries. Ionics 20(2):151–156, 2013. https://doi.org/10.1007/s11581-013-0985-z.

M. F. Hassan, A. N.S.N, K. H. Kamarudin, C. K. Sheng. Solid polymer electrolytes based on starchmagnesium sulphate: Study on morphology and electrical conductivity. ASM Science Journal Special Issue pp. 17–28, 2018.

S. B. Aziz, M. A. Brza, K. Mishra, et al. Fabrication of high performance energy storage EDLC device from proton conducting methylcellulose: dextran polymer blend electrolytes. Journal of Materials Research and Technology 9(2):1137–1150, 2020. https://doi.org/10.1016/j.jmrt.2019.11.042.

M. F. Z. Kadir, S. R. Majid, A. K. Arof. Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochimica Acta 55(4):1475–1482, 2010. https://doi.org/10.1016 j.electacta.2009.05.011.

A. H. A. M. N. Z. Mohd Sapri. Conductivity and FTIR studies on PEO-NaCF3SO3 solid polymer electrolyte films. Science Letters 10(1):11–13, 2016.

N. N. A. Amran, N. S. A. Manan, M. F. Z. Kadir. The effect of LiCF3SO3 on the complexation with potato starch-chitosan blend polymer electrolytes. Ionics 22(9):1647–1658, 2016. https://doi.org/10.1007/s11581-016-1684-3.

Downloads

Published

2021-08-31

Issue

Section

Articles