Performance characteristics of Hopkinson’s set-up pneumatic launcher

Authors

  • Kamil Sobczyk Military University of Technology, Faculty of Civil Engineering and Geodesy, Department of Military Engineering and Military Infrastructure, 2 Gen. Sylwester Kaliski Str., 00-908 Warsaw, Poland https://orcid.org/0000-0002-5929-757X
  • Leopold Kruszka Military University of Technology, Faculty of Civil Engineering and Geodesy, Department of Military Engineering and Military Infrastructure, 2 Gen. Sylwester Kaliski Str., 00-908 Warsaw, Poland
  • Ryszard Chmielewski Military University of Technology, Faculty of Civil Engineering and Geodesy, Department of Military Engineering and Military Infrastructure, 2 Gen. Sylwester Kaliski Str., 00-908 Warsaw, Poland https://orcid.org/0000-0001-5662-9180
  • Ryszard Rekucki Military University of Technology, Faculty of Civil Engineering and Geodesy, Department of Military Engineering and Military Infrastructure, 2 Gen. Sylwester Kaliski Str., 00-908 Warsaw, Poland https://orcid.org/0000-0002-2040-7073

DOI:

https://doi.org/10.14311/AP.2021.61.0552

Keywords:

pneumatic launcher, Hopkinson measuring bar, direct impact tests

Abstract

The paper presents a performance characteristics of a pneumatic launcher, which is an important element of the split Hopkinson bar set-up (SHPB) at the Department of Military Engineering and Infrastructure (the Military University of Technology in Warsaw) for the purpose of dynamic strength tests of construction materials. The process of experimental calibration of the launcher for selected loading bar-projectiles is shown. Two types of compression during direct impact tests were also used simultaneously to investigate the behaviour of metallic samples with the use of this launcher as well as the Hopkinson measuring bar: the first — a short cylindrical sample, including a miniature (small diameter) sample, and the second — a long cylindrical sample (Taylor test). The relationships describing the stress and strain state as a function of strain rate for the first type of the experiment and engineering empirical formulas for the second type of the research were given.

References

D. M. Hansen. Zalinski’s dynamite gun. Technology and Culture 25(2):264–279, 1984. https://doi.org/10.2307/3104714.

A. Zbrowski. Badania prototypu działa pneumatycznego. Problemy Eksploatacji 3:217–234, 2011.

K. Sobczyk, L. Kruszka, R. Chmielewski, R. Rekucki. Selected technical and legal aspects of the pneumatic launcher operation for Hopkinson measuring bars set. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych (3):163–172, 2020. https://doi.org/10.37105/iboa.76.

K. Sobczyk, R. Chmielewski, L. Kruszka. The concept of experimental research on the behavior of sand cover material for protective shelters for civilians. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych (1):11–16, 2020. https://doi.org/10.37105/iboa.51.

J. Falta, P. Zlámal, M. Adorna. Instrumentation of Split Hopkinson Pressure Bar for testing of cellular metallic materials. Acta Polytechnica CTU Proceedings 18:10–14, 2018. https://doi.org/10.14311/APP.2018.18.0010.

M. Adorna, P. Zlámal, T. Fíla, et al. Testing of hybrid nickel-polyurethane foams at high strain-rates using Hopkinson bar and digital image correlation. Acta Polytechnica CTU Proceedings 18:72–76, 2018. https://doi.org/10.14311/APP.2018.18.0072.

P. E. Markovsky, J. Janiszewski, V. I. Bondarchuk, et al. Effect of strain rate on microstructure evolution and mechanical behavior of titanium-based materials. Metals 10(11):1404, 2020. https://doi.org/10.3390/met10111404.

R. Panowicz, J. Janiszewski, K. Kochanowski. Effects of sample geometry imperfections on the results of split Hopkinson pressure bar experiments. Experimental Techniques 43:397–403, 2019. https://doi.org/10.1007/s40799-018-0293-7.

W. Moćko, C. Kostrzewski, A. Brodecki. Influence of anisotropy on the viscoplastic properties of a hot rolled Ti6Al4V titanium alloy. Archives of Metallurgy and Materials 63:403–411, 2018. https://doi.org/10.24425/118954.

H. M. An, L. Liu. Numerical study of dynamic behaviors of concrete under various strain rates. Archives of Civil Engineering LXV(4):21–36, 2019. https://doi.org/10.2478/ace-2019-0044.

M. Li, X. Mao, L. Cao, H. Pu. Influence of heating rate on the dynamic mechanical performance of coal measure rocks. International Journal of Geomechanics 17(8), 2017. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000888.

Y. Lv, J. Liu, Z. Xiong. One-dimensional dynamic compressive behavior of dry calcareous sand at high strain rates. Journal of Rock Mechanics and Geotechnical Engineering 11(1):192–201, 2019. https://doi.org/10.1016/j.jrmge.2018.04.013.

S. Wen, C. Zhang, Y. Chang, P. Hu. Dynamic compression characteristics of layered rock mass of significant strength changes in adjacent layers. Journal of Rock Mechanics and Geotechnical Engineering 12(2):353–365, 2020. https://doi.org/10.1016/j.jrmge.2019.09.003.

J. Xu, Y. Kang, Z. Wang, X. Wang. Dynamic mechanical behavior of granite under the effects of strain rate and temperature. International Journal of Geomechanics 20(2), 2020. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001583.

R. Chmielewski, L. Kruszka, R. Rekucki, K. Sobczyk. Experimental investigation of dynamic behavior of silty sand. Archives of Civil Engineering LXVII(1):481–498, 2021. https://doi.org/10.24425/ACE.2021.136484.

A. M. Bragov, L. A. Igumnov, A. Y. Konstantinov, et al. Methodological aspects of testing brittle materials using the split Hopkinson bar technique. Strain p. e12389, 2021. https://doi.org/10.1111/str.12389.

G. Ryzińska, R. Gieleta. Effect of test velocity on the energy absorption under progressive crushing of composite tubes. Advances in Science and Technology Research Journal 14(2):94–102, 2020. https://doi.org/10.12913/22998624/118551.

D. Miedzińska, R. Gieleta, E. Małek. Experimental study of strength properties of SLA resins under low and high strain rates. Mechanics of Materials 141:103245, 2020. https://doi.org/10.1016/j.mechmat.2019.103245.

A. Papliński. Assessment of threat arising by the exploitation of acetylene. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych (3):198–211, 2020. https://doi.org/10.37105/iboa.78.

A. Baryłka. Zagadnienie zdatności obiektów budowlanych do użytkowania w problematyce inżynierii bezpieczeństwa tych obiektów. Inżynieria Bezpieczeństwa Obiektów Antropogenicznych (4), 2019. https://doi.org/10.37105/iboa.31.

U. Lindholm. Some experiments with the Split-Hopkinson Pressure Bar. Journal of the Mechanics and Physics of Solids 12(5):317–335, 1964. https://doi.org/10.1016/0022-5096(64)90028-6.

Announcement of the Marshal of the Sejm of the Republic of Poland of May 15, 2020, on the publication of the consolidated text of the Act on weapons and ammunition (in Polish). Dz. U. 2020 poz. 955.

Act of June 13, 2019, on the performance of an economic activity in the field of production and trade in explosives, weapons, ammunition, as well as products and technology for military or police purposes (in Polish). Dz. U. 2019 poz. 1214.

Regulation of the Council of Ministers of September 17, 2019, on the classification of types of explosives, weapons, ammunition, and products and technologies for military or police purposes, the production or trade of which requires a license (in Polish). Dz. U. 2019 poz. 1888.

C. M. A. Silva, P. A. R. Rosa, P. A. F. Martins. An innovative electromagnetic compressive split Hopkinson bar. International Journal of Mechanics and Materials in Design 5(3):281–288, 2009. https://doi.org/10.1007/s10999-009-9101-y.

S. J. Hiermaier. Structures under crash and impact. Continuum mechanics, discretization and experimental characterization. Springer, 2010. ISBN 978-1-4419-4479-5.

A. M. Bragov, A. Y. Konstantinov, A. K. Lomunov. Determining the Bauschinger effect using the direct impact technique. Technical physics letters 36(8):694–695, 2010. https://doi.org/10.1134/S1063785010080043.

Downloads

Published

2021-08-31

Issue

Section

Articles