Application of additional insulation to ETICS on surfaces with biocorrosion

Authors

  • Naďa Antošová Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Building Technology, Radlinského 11, 810 05 Bratislava, Slovakia
  • Patrik Šťastný Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Building Technology, Radlinského 11, 810 05 Bratislava, Slovakia
  • Marek Petro Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Building Technology, Radlinského 11, 810 05 Bratislava, Slovakia
  • Štefan Krištofič Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Building Technology, Radlinského 11, 810 05 Bratislava, Slovakia

DOI:

https://doi.org/10.14311/AP.2021.61.0590

Keywords:

biocorrosion, external thermal insulation system, repair and maintenance of ETICS

Abstract

The paper presents partial outputs from an experiment that demonstrated the impact of applying an additional insulation on an existing contact insulation system with a green-algae surface. The aim was mainly to detect the development of microorganisms in the gap between the original and the new insulation. The existing ETICS on the polystyrene-based contact thermal insulation system and EPS-based additional thermal insulation were used in the experiment. A theoretical modelling of temperature conditions showed that this type of doubling the insulation presented the highest risk of condensation of water in the gap between the insulation layers and that these conditions presented suitable humidity conditions for the growth of microorganisms. The reason for the experiment is to demonstrate the need to eliminate microorganisms before applying an additional thermal insulation to surfaces with biocorrosion. This is especially the case where EPS is used. The temperature and humidity parameters obtained during the experiment can be used to model the moisture regime in the gap of other types of insulations (e.g. MW, PUR, PIR.)

Downloads

Download data is not yet available.

References

J. Švajlenka, M. Kozlovská, M. Spišáková. The benefits of modern method of construction based on wood in the context of sustainability. International Journal of Environmental Science and Technology 14:1591–1602, 2017. https://doi.org/10.1007/s13762-017-1282-6.

J. Švajlenka, M. Kozlovská. Elements of the fourth industrial revolution in the production of wood buildings. Tehnički glasnik 14(3):365–368, 2020. https://doi.org/10.31803/tg-20200618130201.

J. Švajlenka, M. Kozlovská. Houses based on wood as an ecological and sustainable housing alternative — case study. Sustainability 10(5):1502, 2018. https://doi.org/10.3390/su10051502.

J. Švajlenka, M. Kozlovská, T. Pošiváková. Biomonitoring the indoor environment of agri-cultural buildings. Annals of Agricultural and Environmental Medicine 25(2):292–295, 2018. https://doi.org/10.26444/aaem/81314.

M. Finkbeiner, E. M. Schau, A. Lehmann, M. Traverso. Towards life cycle sustainability assessment. Sustainability 2(10):3309–3322, 2010. https://doi.org/10.3390/su2103309.

R. Lal. Restoring soil quality to mitigate soil degradation. Sustainability 7(5):5875–5895, 2015. https://doi.org/10.3390/su7055875.

F. Valentina, A. Diamantia, G. Palleschi. New bio-cleaning strategies on porous building materials affected by biodeterioration event. Applied Surface Science 256(22):6550–6563, 2010. https://doi.org/10.1016/j.apsusc.2010.04.046.

B. Daniotti, S. L. Spagnolo, R. Galliano. The durability experimental evaluation of photocatalytic cement-based materials. In 12th International Conference on Durability of Building Materials and Components, pp. 212–219. 2011.

K. Breuer, W. Hofbauer, N. Krueger, et al. Wirksamkeit und Dauerhaftigkeit von Bioziden in Bautenbeschichtungen. Bauphysik 34(4):170–182, 2012. https://doi.org/10.1002/bapi.201200021.

J. R. Krentowski, P. Knyziak, M. Mackiewicz. Durability of interlayer connections in exter-nal walls in precast residential buildings. Engineering Failure Analysis 121:105059, 2021. http: //doi.org/10.1016/j.engfailanal.2020.105059.

K. Kobetičová, R. Černý. Terrestrial eutrophication of building materials and buildings: An emerging topic in environmental studies. Science of The Total Environment 689:1316–1328, 2019. https://doi.org/10.1016/j.scitotenv.2019.06.423.

L. Graziani, E. Quagliarini. On the modelling of algal biofouling growth on nano-TiO2 coated and uncoated limestones and sandstones. Coatings 8(2):54, 2018. https://doi.org/10.3390/coatings8020054.

P. Raschle, R. Büchli. Algen und Pilze an Fassaden Ursachen und Vermeidung. 2nd ed. Fraunhofer IRB Verlag, 2006.

K. Sedlbauer, et al. Prognoseverfahren zum biologischen Befall durch Algen, Pilze und Flechten an Bauteiloberflächen auf Basis bauphysikalischer und mikrobieller Untersuchungen. Band 77. Fraunhofer IRB Verlag, Holzkirchen, 2007.

E. Barreira, et al. Hygrothermal Behavior, Building Pathology and Durability, chap. Biological Defacement of External Thermal Insulation Composite Systems, pp. 23–44. Springer-Verlag„ Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-31158-1_2.

C. Gaylarde, M. R. Silva, T. Warscheid. Microbial impact on building materials: an overview. Materials and Structures 36(5):342–352, 2003. https://doi.org/10.1007/BF02480875.

L. Wadsö, et al. Biological applications of a new isothermal calorimeter that simultaneously measures at four temperatures. Journal of Thermal Analysis Calorimeter 104(1):119–126, 2011. https://doi.org/10.1007/s10973-010-1140-y.

K. Minarovičová, D. Dlhý. Environmentally safe system for treatment of bio corrosion of ETICS. MATEC Web of Conferences 146:03005, 2018. https://doi.org/10.1051/matecconf/201814603005.

E. Terpakova, A. Estokova. Analytical support in solving bio-corrosion of fasade system ETICS. Section green buildings technologies and materials. In 16th International Multidisciplinary Scientific GeoConference SGEM 2016,, pp. 33–40. 2016.

M. Krus, D. Rösler. Hygrothermische Berechnung der Einsatzgrenzen unterschiedlicher Systeme bei der Aufdoppelung von Wärmedämmverbundsystemen. Bauphysik 33(3):142–149, 2011. https://doi.org/10.1002/bapi.201110017.

B. Belániová, N. Antošová, L. Šupejová. Solution of problems of ETICS with biocorrosion. MATEC Web of Conferences 146:03007, 2018. https://doi.org/10.1051/matecconf/201814603007.

Tepelné posudky software Svoboda Teplo (Thermal assessments software Svoboda Teplo).

E. Barreira, V. P. de Freitas. Importance of thermography in the study of ETICS finishing coatings degradation due to algae and mildew growth. In 10 DBMC - International Conference On Durability of Building Materials and Components, pp. 17–20. 2005.

M. H. Künzel, M. Krus, C. Fitz, et al. Accelerated test procedure to assess the microbial growth resistance of exterior finishes. In 12th International Conference on Durability of Building Materials and Components 1, pp. 260–267. 2011.

Z. Sternová, et al. Zásady navrhovania a zhotovovania zdvojenia ETICS. Technická informácia č. 3. Jaga group, Bratislava, 2016.

STN 73 2901/01: 2015 Zhotovovanie vonkajších tepelnoizolačných kontaktných systémov (ETICS).

E. Piecková, Z. Pivovarová, Z. Sternová, E. Droba. Building materials vs. fungal colonization — model experiments. Environmental Health Risk IV 11:71–78, 2007. https://doi.org/10.2495/EHR070081.

ETAG 004: External composite thermal insulation systems with plaster (ETICS).

Downloads

Published

2021-10-31

How to Cite

Antošová, N., Šťastný, P., Petro, M., & Krištofič, Štefan. (2021). Application of additional insulation to ETICS on surfaces with biocorrosion. Acta Polytechnica, 61(5), 590–600. https://doi.org/10.14311/AP.2021.61.0590

Issue

Section

Articles