Cavitation wear of Eurofer 97, Cr18Ni10Ti and 42HNM alloys

Authors

  • Hanna Rostova National Science Center Kharkiv Institute of Physics and Technology, Institute of Solid State Physics, Materials Science and Technologies NAS of Ukraine, 1 Akademichna Str., 61108 Kharkiv, Ukraine
  • Victor Voyevodin National Science Center Kharkiv Institute of Physics and Technology, Institute of Solid State Physics, Materials Science and Technologies NAS of Ukraine, 1 Akademichna Str., 61108 Kharkiv, Ukraine; V.N. Karazin National University, Physics and Technology Faculty, Department of Reactor Materials and Physical Technologies, 4 Svobody Sq., 61022 Kharkiv, Ukraine
  • Ruslan Vasilenko National Science Center Kharkiv Institute of Physics and Technology, Institute of Solid State Physics, Materials Science and Technologies NAS of Ukraine, 1 Akademichna Str., 61108 Kharkiv, Ukraine
  • Igor Kolodiy National Science Center Kharkiv Institute of Physics and Technology, Institute of Solid State Physics, Materials Science and Technologies NAS of Ukraine, 1 Akademichna Str., 61108 Kharkiv, Ukraine
  • Vladimir Kovalenko National Science Center Kharkiv Institute of Physics and Technology, Institute of Solid State Physics, Materials Science and Technologies NAS of Ukraine, 1 Akademichna Str., 61108 Kharkiv, Ukraine
  • Vladimir Marinin National Science Center Kharkiv Institute of Physics and Technology, Institute of Solid State Physics, Materials Science and Technologies NAS of Ukraine, 1 Akademichna Str., 61108 Kharkiv, Ukraine
  • Valeriy Zuyok National Science Center Kharkiv Institute of Physics and Technology, Institute of Solid State Physics, Materials Science and Technologies NAS of Ukraine, 1 Akademichna Str., 61108 Kharkiv, Ukraine
  • Alexander Kuprin National Science Center Kharkiv Institute of Physics and Technology, Institute of Solid State Physics, Materials Science and Technologies NAS of Ukraine, 1 Akademichna Str., 61108 Kharkiv, Ukraine

DOI:

https://doi.org/10.14311/AP.2021.61.0762

Keywords:

cavitation erosion, wear, steel, hardness, structure, resistance

Abstract

The microstructure, hardness and cavitation wear of Eurofer 97, Cr18Ni10Ti and 42HNM have been investigated. It was revealed that the cavitation resistance of the 42HNM alloy is by an order of magnitude higher than that of the Cr18Ni10Ti steel and 16 times higher than that of the Eurofer 97 steel. Alloy 42HNM has the highest microhardness (249 kg/mm2) of all the investigated materials, which explains its high cavitation resistance. The microhardness values of the Cr18Ni10Ti steel and the Eurofer 97 were 196.2 kg/mm2 and 207.2 kg/mm2, respectively. The rate of cavitation wear of the austenitic steel Cr18Ni10Ti is 2.6 times lower than that of the martensitic Eurofer 97.

Downloads

Download data is not yet available.

References

M. Lee, Y. Kim, Y. Oh, et al. Study on the cavitation erosion behavior of hardfacing alloys for nuclear power industry. Wear 255(1-6):157–161, 2003. https://doi.org/10.1016/S0043-1648(03)00144-3.

M. Rieth, B. Dafferner, H. D. Rohrig, C. Wassilew. Charpy impact properties of martensitic 10.6% Cr steel (MANET-I) before and after neutron exposure. Fusion Engineering and Design 29:365–370, 1995. https://doi.org/10.1016/0920-3796(95)80043-W.

K. D. Zilnyk, V. B. Oliveira, H. R. Z. Sandim, et al. Martensitic transformation in EUROFER-97 and ODS-EUROFER steels: A comparative study. Journal of Nuclear Materials 462:360–367, 2015. https://doi.org/10.1016/j.jnucmat.2014.12.112.

A. Möslang. IFMIF: the intense neutron source to qualify materials for fusion reactors. Comptes Rendus Physique 9(3-4):457–468, 2008. https://doi.org/10.1016/j.crhy.2007.10.018.

S. J. Zinkle, G. S. Was. Materials challenges in nuclear energy. Acta Materialia 61(3):735–758, 2013. https://doi.org/10.1016/j.actamat.2012.11.004.

Y. Guerin, G. S. Was, S. J. Zinkle. Materials challenges for advanced nuclear energy systems. MRS Bulettin 34(1):10–19, 2009. https://doi.org/10.1017/S0883769400100028.

G. H. Marcus. Innovative nuclear energy systems and the future of nuclear power. Progress in Nuclear Energy 50(2-6):92–96, 2008. https://doi.org/10.1016/j.pnucene.2007.10.009.

K. Ehrlich, J. Konys, L. Heikinheimo. Materials for high performance light water reactors. Journal of Nuclear Materials 327(2-3):140–147, 2004. https://doi.org/10.1016/j.jnucmat.2004.01.020.

R. L. Klueh, D. R. Harries. High-Chromium Ferritic and Martensitic Steels for Nuclear Applications. West Conshohocken, PA: ASTM International, 2001. https://doi.org/10.1520/MONO3-EB.

L. Tan, D. T. Hoelzer, J. T. Busby, et al. Microstructure control for high strength 9Cr ferritic-martensitic steels. Journal of Nuclear Materials 422(1-3):45–50, 2012. https://doi.org/10.1016/j.jnucmat.2011.12.011.

L. Tan, X. Ren, T. R. Allen. Corrosion behaviour of 9-12% Cr ferritic-martensitic steels in supercritical water. Corrosion Science 52(4):1520–1528, 2010. https://doi.org/10.1016/j.corsci.2009.12.032.

M. I. Solonin, A. B. Alekseev, S. A. Averin, et al. Cr-Ni alloys for fusion reactors. Journal of Nuclear Materials 258-263(2):1762–1766, 1998. https://doi.org/10.1016/S0022-3115(98)00406-1.

A. V. Vatulin, V. P. Kondrat’ev, V. N. Rechitskii, M. I. Solonin. Corrosion and radiation resistance of “Bochvaloy” nickel-chromium alloy. Metal Science and Heat Treatment 46(11-12):469–473, 2004. https://doi.org/10.1007/s11041-005-0004-8.

A. F. Rowcliffe, L. K. Mansur, D. T. Hoelzer, R. K. Nanstad. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors. Journal of Nuclear Materials 392(2):341–352, 2009. https://doi.org/10.1016/j.jnucmat.2009.03.023.

M. Stopher. The effects of neutron radiation on nickel-based alloys. Materials Science and Technology 33(5):518–536, 2017. https://doi.org/10.1080/02670836.2016.1187334.

M. I. Solonin, A. B. Alekseev, Y. I. Kazennov, et al. XHM-1 alloy as a promising structural material for water-cooled fusion reactor components. Journal of Nuclear Materials 233-237(1):586–591, 1996. https://doi.org/10.1016/S0022-3115(96)00297-8.

M. I. Solonin. Radiation-resistant alloys of the nickel-chromium system. Metal Science and Heat Treatment 47(7-8):328–332, 2005. https://doi.org/10.1007/s11041-005-0074-7.

M. de los Reyes, L. Edwards, M. A. Kirk, et al. Microstructural evolution of an ion irradiated Ni-Mo-Cr-Fe alloy at elevated temperatures. Materials Transactions 55(3):428–433, 2014. https://doi.org/10.2320/matertrans.MD201311.

C. Le Brun. Molten salts and nuclear energy production. Journal of Nuclear Materials 360(1):1–5, 2007. https://doi.org/10.1016/j.jnucmat.2006.08.017.

S. Delpech, C. Cabet, C. Slim, G. S. Picard. Molten fluorides for nuclear applications. Materials Today 13(12):34–41, 2010. https://doi.org/10.1016/S1369-7021(10)70222-4.

A. H. V. Pavan, R. L. Narayan, M. Swamy, et al. Stress rupture embrittlement in cast Ni-based superalloy 625. Materials Science and Engineering: A 793(139811), 2020. Article number 139811, https://doi.org/10.1016/j.msea.2020.139811.

A. H. V. Pavan, R. L. Narayan, K. Singh, U. Ramamurty. Effect of ageing on microstructure, mechanical properties and creep behavior of alloy 740H. Metallurgical and Materials Transactions A 51:5169–5179, 2020. https://doi.org/10.1007/s11661-020-05951-6.

B. Gurovich, A. Frolov, D. Maltsev, et al. Phase transformations in irradiated 42CrNiMo alloy after annealing at elevated temperatures, and also after rapid annealing, simulating the maximum design basis accident. In XI Conference on reactor materials science, pp. 30–33. AO GNTs NIIAR, Dimitrovgrad, 2019.

B. Sreedhar, S. Albert, A. Pandit. Cavitation damage: Theory and measurements – a review. Wear 372-373:177–196, 2017. https://doi.org/10.1016/j.wear.2016.12.009.

R. H. Richman, W. P. McNaughton. A metallurgical approach to improved cavitation-erosion resistance. Journal of Materials Engineering and Performance 6(5):633–641, 1997. https://doi.org/10.1007/s11665-997-0057-5.

D. E. Zakrzewska, A. K. Krella. Cavitation erosion resistance influence of material properties. Advances in Materials Science 19(4):18–34, 2019. https://doi.org/10.2478/adms-2019-0019.

V. I. Kovalenko, V. G. Marinin. Research of fracture of doped titanium alloys under cavitation (in Russian). Eastern-European Journal of Enterprise Technologies 6(11):4–8, 2015. https://doi.org/10.15587/1729-4061.2015.54118.

V. G. Marinin, V. I. Kovalenko, N. S. Lomino, et al. Cavitation erosion of Ti coatings produced by the vacuum arc method. In Proceedings ISDEIV. 19th International Symposium on Discharges and Electrical Insulation in Vacuum (Cat. No.00CH37041), vol. 2, pp. 567–570. IEEE, Xi’an, China, 2000. https://doi.org/10.1109/DEIV.2000.879052.

ASTM G32-16, standard test method for cavitation erosion using vibratory apparatus, 2016. https://doi.org/10.1520/G0032-16.

H. G. Feller, Y. Kharrazi. Cavitation erosion of metals and alloys. Wear 93(3):249–260, 1984. https://doi.org/10.1016/0043-1648(84)90199-6.

S. Hattori, R. Ishikura. Revision of cavitation erosion database and analysis of stainless steel data. Wear 268(1-2):109–116, 2010. https://doi.org/10.1016/j.wear.2009.07.005.

W. Liu, Y. G. Zheng, C. S. Liu, et al. Cavitation erosion behavior of Cr-Mn-N stainless steels in comparison with 0Cr13Ni5Mo stainless steel. Wear 254(7-8):713–722, 2003. https://doi.org/10.1016/S0043-1648(03)00128-5.

J. Hoffmann, M. Rieth, L. Commin, et al. Improvement of reduced activation 9 %Cr steels by ausforming. Nuclear Materials and Energy 6:12–17, 2016. https://doi.org/10.1016/j.nme.2015.12.001.

Downloads

Published

2021-12-31

How to Cite

Rostova, H., Voyevodin, V. ., Vasilenko, R. ., Kolodiy, I. ., Kovalenko, V. ., Marinin, V. ., Zuyok, V., & Kuprin, A. . (2021). Cavitation wear of Eurofer 97, Cr18Ni10Ti and 42HNM alloys. Acta Polytechnica, 61(6), 762–767. https://doi.org/10.14311/AP.2021.61.0762

Issue

Section

Articles