Dirac oscillator in dynamical noncommutative space


  • Ilyas Haouam Université Frères Mentouri, Laboratoire de Physique Mathématique et de Physique Subatomique (LPMPS), Constantine 25000, Algeria




dynamical noncommutative space, τ -space, noncommutative Dirac oscillator, perturbation theory


In this paper, we address the energy eigenvalues of two-dimensional Dirac oscillator perturbed by a dynamical noncommutative space. We derived the relativistic Hamiltonian of Dirac oscillator in the dynamical noncommutative space, in which the space-space Heisenberg-like commutation relations and noncommutative parameter are position-dependent. Then, we used this Hamiltonian to calculate the first-order correction to the eigenvalues and eigenvectors, based on the language of creation and annihilation operators and using the perturbation theory. It is shown that the energy shift depends on the dynamical noncommutative parameter τ . Knowing that, with a set of two-dimensional Bopp-shift transformation, we mapped the noncommutative problem to the standard commutative one.


Download data is not yet available.


N. Seiberg, E. Witten. String theory and noncommutative geometry. Journal of High Energy Physics (9):032, 1999. https://doi.org/10.1088/1126-6708/1999/09/032.

D. M. Gingrich. Noncommutative geometry inspired blackholes in higher dimensions at the LHC. Journal of High Energy Physics 2010:22, 2010. https://doi.org/10.1007/JHEP05(2010)022.

P. Nicolini. Noncommutative black holes, the final appeal to quantum gravity: a review. International Journal of Modern Physics A 24(7):1229–1308, 2009. https://doi.org/10.1142/S0217751X09043353.

J. M. Gracia-Bondia. New Paths Towards Quantum Gravity, chap. Notes on quantum gravity and noncommutative geometry, pp. 3–58. Springer, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-11897-5_1.

M. Chaichian, M. M. Sheikh-Jabbari, A. Tureanu. Hydrogen atom spectrum and the lamb shift in noncommutative QED. Physical Review Letters 86(13):2716–2719, 2001. https://doi.org/10.1103/PhysRevLett.86.2716.

I. Haouam. Analytical solution of (2+1) dimensional Dirac equation in time-dependent noncommutative phase-space. Acta Polytechnica 60(2):111–121, 2020. https://doi.org/10.14311/AP.2020.60.0111.

I. Haouam. On the noncommutative geometry in quantum mechanics. Journal of Physical Studies 24(2):1–10, 2002. https://doi.org/10.30970/jps.24.2002.

M. R. Douglas, N. A. Nekrasov. Noncommutative field theory. Reviews of Modern Physics 73(4):977–1029, 2001. https://doi.org/10.1103/RevModPhys.73.977.

I. Haouam. On the Fisk-Tait equation for spin-3/2 fermions interacting with an external magnetic field in noncommutative space-time. Journal of Physical Studies 24(1):1801, 2020. https://doi.org/10.30970/jps.24.1801.

H. S. Snyder. Quantized space-time. Physical Review 71(1):38–41, 1947. https://doi.org/10.1103 PhysRev.71.38.

H. S. Snyder. The electromagnetic field in quantized space-time. Physical Review 72(1):68–71, 1947. https://doi.org/10.1103/PhysRev.72.68.

N. Sasakura. Space-time uncertainty relation and Lorentz invariance. Journal of High Energy Physics (05):015, 2000. https://doi.org/10.1088/1126-6708/2000/05/015.

J. Lukierski, H. Ruegg, A. Nowicki, V. N. Tolstoi. q-deformation of Poincaré algebra. Physics Letters B 264(3-4):331–338, 1991. https://doi.org/10.1016/0370-2693(91)90358-W.

A. P. Balachandran, S. Vaidya. Lectures on fuzzy and fuzzy susy physics, 2007. World Scientific. IISc/CHEP/11/05.

S. A. Alavi, N. Rezaei. Dirac equation, hydrogen atom spectrum and the Lamb shift in dynamical non-commutative spaces. Pramana 88:77, 2017. https://doi.org/10.1007/s12043-017-1381-4.

A. Fring, L. Gouba, F. G. Scholtz. Strings from position-dependent noncommutativity. Journal of Physics A: Mathematical and Theoretical 43:345401, 2010. https://doi.org/10.1088/1751-8113/43/34/345401.

M. Gomes, V. G. Kupriyanov. Position-dependent noncommutativity in quantum mechanics. Physical Review D 79:125011, 2009. https://doi.org/10.1103/PhysRevD.79.125011.

D. Itô, K. Mori, E. Carriere. An example of dynamical systems with linear trajectory. Nuovo Cimento A (1965-1970) 51:1119–1121, 1967. https://doi.org/10.1007/BF02721775.

M. Moshinsky, A. Szczepaniak. The Dirac oscillator. Journal of Physics A: Mathematical and General 22(17):L817, 1989. https://doi.org/10.1088/0305-4470/22/17/002.

R. P. Martínez-y-Romero, A. L. Salas-Brito. Conformal invariance in a Dirac oscillator. Journal of Mathematical Physics 33(5):1831, 1992. https://doi.org/10.1063/1.529660.

J. Benitez, P. R. Martnez y Romero, H. N. Núnez-Yépez, A. L. Salas-Brito. Solution and hidden supersymmetry of a Dirac oscillator. Physical Review Letters 64:1643, 1990. https://doi.org/10.1103/PhysRevLett.64.1643.

C. Quesne, M. Moshinsky. Symmetry Lie algebra of the Dirac oscillator. Journal of Physics A: Mathematical and General 23(12):2263, 1990. https://doi.org/10.1088/0305-4470/23/12/011.

O. L. de Lange. Shift operators for a Dirac oscillator. Journal of Mathematical Physics 32(5):1296, 1991. https://doi.org/10.1063/1.529328.

A. Bermudez, M. Martin-Delgado, E. Solano. Exact mapping of the 2+1 Dirac oscillator onto the Jaynes-Cummings model: Ion-trap experimental proposal. Physical Review A 76:041801(R), 2007. https://doi.org/10.1103/PhysRevA.76.041801.

A. Bermudez, M. A. Martin-Delgado, A. Luis. Chirality quantum phase transition in the Dirac oscillator. Physical Review A 77(6):063815, 2008. https://doi.org/10.1103/PhysRevA.77.063815.

J. A. Franco-Villafañe, E. Sadurní, S. Barkhofen, et al. First experimental realization of the Dirac oscillator. Physical Review Letters 111:170405, 2013. https://doi.org/10.1103/PhysRevLett.111.170405.

C. Quimbay, P. Strange. arXiv:1311.2021.

C. Quimbay, P. Strange. arXiv:1312.5251.

A. Boumali. Thermodynamic properties of the graphene in a magnetic field via the two-dimensional Dirac oscillator. Physica Scripta 90(4):045702, 2015. https://doi.org/10.1088/0031-8949/90/4/045702.

B. Bagchi, A. Fring. Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems. Physics Letters A 373(47):4307–4310, 2009. https://doi.org/10.1016/j.physleta.2009.09.054.

I. Haouam. The non-relativistic limit of the DKP equation in non-commutative phase-space. Symmetry 11(2):223, 2019. https://doi.org/10.3390/sym11020223.

B. Mandal, S. Verma. Dirac oscillator in an external magnetic field. Physics Letters A 374(8):1021–1023, 2010. https://doi.org/10.1016/j.physleta.2009.12.048.

A. Boumali, H. Hassanabadi. The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field. The European Physical Journal Plus 128:124, 2013. https://doi.org/10.1140/epjp/i2013-13124-y.

A. Bermudez, M. A. Martin-Delgado, E. Solano. Mesoscopic superposition states in relativistic landau levels. Physical Review Letters 99:123602, 2007. https://doi.org/10.1103/PhysRevLett.99.123602.

J. J. Sakurai. Modern Quantum Mechanics. (revised edition). Addison-Wesley, 1994.

S. Cai, T. Jing, G. Guo, et al. Dirac oscillator in noncommutative phase space. International Journal of Theoretical Physics 49:1699–1705, 2010. https://doi.org/10.1007/s10773-010-0349-7.

B. P. Mandal, S. K. Rai. Noncommutative Dirac oscillator in an external magnetic field. Physics Letters A 376(36):2467–2470, 2012. https://doi.org/10.1016/j.physleta.2012.07.001.

M. Hosseinpour, H. Hassanabadi, M. de Montigny. The Dirac oscillator in a spinning cosmic string spacetime. The European Physical Journal C 79:311, 2019. https://doi.org/10.1140 epjc/s10052-019-6830-4.

M. de Montigny, S. Zare, H. Hassanabadi. Fermi field and Dirac oscillator in a Som-Raychaudhuri space-time. General Relativity and Gravitation volume 50:47, 2018. https://doi.org/10.1007/s10714-018-2370-8.

K. Bakke, H. Mota. Dirac oscillator in the cosmic string spacetime in the context of gravity’s rainbow. The European Physical Journal Plus 133:409, 2018. https://doi.org/10.1140/epjp/i2018-12268-6.

H. Chen, Z.-W. Long, Y. Yang, C.-Y. Long. Study of the Dirac oscillator in the presence of vector and scalar potentials in the cosmic string space-time. Modern Physics Letters A 35(21):2050179, 2020. https://doi.org/10.1142/S0217732320501795.

F. Ahmed. Interaction of the Dirac oscillator with the Aharonov-Bohm potential in (1+2)-dimensional Gürses space-time backgrounds. Annals of Physics 415:168113, 2020. https://doi.org/10.1016/j.aop.2020.168113.

D. F. Lima, F. M. Andrade, L. B. Castro, et al. On the 2D Dirac oscillator in the presence of vector and scalar potentials in the cosmic string spacetime in the context of spin and pseudospin symmetries. The European Physical Journal C 79:596, 2019. https://doi.org/10.1140/epjc/s10052-019-7115-7.

O. Bertolami, J. G. Rosa, C. M. L. de Aragão, et al. Noncommutative gravitational quantum well. Physical Review D 72:025010, 2005. https://doi.org/10.1103/PhysRevD.72.025010.

S. A. Alavi, M. A. Nasab. Gravitational radiation in dynamical noncommutative spaces. General Relativity and Gravitation 49:5, 2017. https://doi.org/10.1007/s10714-016-2167-6.




How to Cite

Haouam, I. (2021). Dirac oscillator in dynamical noncommutative space. Acta Polytechnica, 61(6), 689–702. https://doi.org/10.14311/AP.2021.61.0689