Low earth orbit nanosatellite: influence of heat dissipation on passive thermal analysis

Authors

  • Amine Akka Abdelmalek Essaadi University, Department of Physics, Laboratory of physics and condensed matter, BP. 2121 M’Hannech II. 93030 Tetouan, Kingdom of Morocco
  • Farid Benabdelouahab Abdelmalek Essaadi University, Department of Physics, Laboratory of physics and condensed matter, BP. 2121 M’Hannech II. 93030 Tetouan, Kingdom of Morocco
  • Randa Yerrou Abdelmalek Essaadi University, Department of Physics, ERSN Laboratory, BP. 2121 M’Hannech II. 93030 Tetouan, Kingdom of Morocco

DOI:

https://doi.org/10.14311/AP.2022.62.0498

Keywords:

nanosatellite, thermal stability, material coatings, heat dissipation, passive thermal control

Abstract

The use of small satellites in ambitious missions presents challenges related to thermal breakdowns as one of the critical issues contributing to their failure. Heat dissipation and thermal management are still the major challenges in nanosatellite systems design. To meet the thermal stability requirements, it becomes statutory to manage passive and active thermal control to reach this goal while a variety of factors, such as high-powered components, sunlight and shadow on orbit, or a tight spacecraft layout, remain imposed.
A spherical nanosatellite thermal analysis was performed to show the effect of energy dissipation in a low earth orbit and the stability of the system with a special attention to batteries, which persist as the weak link among electronics parts. Additionally, a set of different material coatings was used to demonstrate their impact on the nanosatellite’s thermal behaviour, hence highlighting their importance while designing such a spacecraft.

Downloads

Download data is not yet available.

References

K. Woellert, P. Ehrenfreund, A. J. Ricco, H. Hertzfeld. Cubesats: Cost-effective science and technology platforms for emerging and developing nations. Advances in Space Research 47(4):663–684, 2011. https://doi.org/10.1016/j.asr.2010.10.009.

B. M. Kading, J. Straub, R. Marsh. Openorbiter mechanical design: A new approach to the design of a 1-U CubeSat. In 53rd AIAA Aerospace Sciences Meeting. 2015. https://doi.org/10.2514/6.2015-1835.

M. H. Heidt, J. Puig-Suari, A. S. Moore, et al. CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation. In 14th Annual AIAA/USU Conference on Small Satellites, SSC00-V-5. 2000. https://digitalcommons.usu.edu/smallsat/2000/All2000/32.

J. Berk, J. Straub, D. Whalen. The open prototype for educational nanosats: Fixing the other side of the small satellite cost equation. In 2013 IEEE Aerospace Conference, pp. 1–16. 2013. https://doi.org/10.1109/AERO.2013.6497393.

D. W. Hengeveld, J. E. Braun, E. A. Groll, A. D. Williams. Hot- and cold-case orbits for robust thermal control. Journal of Spacecraft and Rockets 46(6):1249–1260, 2009. https://doi.org/10.2514/1.44468.

B. Anderson, C. Justus, G. Batts. Guidelines for the selection of near-Earth thermal environment parameters for spacecraft design. NASA Technical Memorandum. Accessed 30-09-2020, https://ntrs.nasa.gov/citations/20020004360.

K. E. Boushon. Thermal analysis and control of small satellites in low Earth orbit. Master’s thesis, Missouri University of Science and Technology, 2018.

J. Vojta, S. Zuik, V. Baturkin, et al. Thermocontrol system concept of magion small subsatellites of interball mission. Acta Astronautica 39(9):971–976, 1996. https://doi.org/10.1016/S0094-5765(97)00083-0.

A. Akka, F. Benabdelouahab. Passive thermal analysis of a cubesat by a finite element modeling. JP Journal of Heat and Mass Transfer 21(21):133–149, 2020. https://doi.org/10.17654/HM021010133.

A. Akka, F. Benabdelouahab, R. Yerrou. Evaluating the temperature toggling of a nanosatellite through a preliminary passive thermal analysis. JP Journal of Heat and Mass Transfer 24(2):383–391, 2021. https://doi.org/10.17654/0973576321011.

A. Akka, F. Benabdelouahab. Nanosatellite: A progressive vision of performing passive thermal control. In AIP Conference Proceedings. In press.

V. Baturkin. Micro-satellites thermal control–concepts and components. Acta Astronautica 56(1-2):161–170, 2005. https://doi.org/10.1016/j.actaastro.2004.09.003.

K. Badari Narayana, V. Venkata Reddy. Thermal design and performance of HAMSAT. Acta Astronautica 60(1):7–16, 2007. https://doi.org/10.1016/j.actaastro.2006.07.001.

S. Corpino, M. Caldera, F. Nichele, et al. Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronautica 115:247–261, 2015. https://doi.org/10.1016/j.actaastro.2015.05.012.

V. Knap, L. K. Vestergaard, D.-I. Stroe. A review of battery technology in cubesats and small satellite solutions. Energies 13(16):4097, 2020. https://doi.org/10.3390/en13164097.

P. Fortescue, G. Swinerd, J. Stark. Spacecraft systems engineering. John Wiley & Sons, Ltd., Chichester, UK, 2011.

J. R. Wertz, D. F. Everett, J. J. Puschell. Space Mission Engineering: The New SMAD. Microcosm Press, Hawthorn, CA, 2011.

R. J. Boain. A-B-Cs of sun-synchronous orbit mission design. In 14th AAS/AIAA Space Flight Mechanics Meeting, AAS 04-108. 2004. Accessed 02-11-2020, http://hdl.handle.net/2014/37900.

P. Walimbe, S. Padekar. Evolutionary insights into the state-of-the-art passive thermal control systems for thermodynamic stability of smallsats. Advanced Engineering Forum 35:29–45, 2020. https://doi.org/10.4028/www.scientific.net/AEF.35.29.

J. Young, S. Inlow, B. Bender. Solving thermal control challenges for CubeSats: Optimizing passive thermal design. In 2019 IEEE Aerospace Conference, pp. 1–7. 2019. https://doi.org/10.1109/AERO.2019.8741754.

J. Liu, M. Li, Q. Gao. Micro satellite thermal balance testing: Orbit heat flux simulation method and verification. MATEC Web of Conferences 54:09001, 2016. https://doi.org/10.1051/matecconf/20165409001.

A. Akka, F. Benabdelouahab, R. Yerrou. Nanosatellite case study: Issue of heat dissipation across passive thermal analysis. E3S Web of Conferences 336:00057, 2022. https://doi.org/10.1051/e3sconf/202233600057.

J. H. Henninger. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings. Tech. rep., National Aeronautics and Space Adminitration, Scientific and Technical Information Branch, 1984.

A. Akka, F. Benabdelouahab, R. Yerrou. Nanosatellite on-low-Earth-orbit temperature simulation and its implication concerning extreme cases. In AIP Conference Proceedings. In press.

Downloads

Published

2022-10-31

How to Cite

Akka, A., Benabdelouahab, F., & Yerrou, R. (2022). Low earth orbit nanosatellite: influence of heat dissipation on passive thermal analysis. Acta Polytechnica, 62(5), 498–504. https://doi.org/10.14311/AP.2022.62.0498

Issue

Section

Articles