On generalized Heun equation with some mathematical properties

Authors

  • Nasser Saad University of Prince Edward Island, Department of Mathematics and Statistics, 550 University Avenue, Charlottetown, PEI, Canada C1A 4P3.

DOI:

https://doi.org/10.14311/AP.2022.62.0165

Keywords:

Heun equation, confluent forms of Heun’s equation, polynomial solutions, sequences of orthogonal polynomials

Abstract

We study the analytic solutions of the generalized Heun equation, (α0 + α1r + α2r2 + α3r3) y′′ + (β0 + β1r + β2r2) y′ + (ε0 + ε1r) y = 0, where |α3| + |β2|≠ 0, and {αi}3i=0, {βi}2i=0, {εi}1i=0 are real parameters. The existence conditions for the polynomial solutions are given. A simple procedure based on a recurrence relation is introduced to evaluate these polynomial solutions explicitly. For α0 = 0, α1≠ 0, we prove that the polynomial solutions of the corresponding differential equation are sources of finite sequences of orthogonal polynomials. Several mathematical properties, such as the recurrence relation, Christoffel-Darboux formulas and the norms of these polynomials, are discussed. We shall also show that they exhibit a factorization property that permits the construction of other infinite sequences of orthogonal polynomials.

Downloads

Download data is not yet available.

References

A. F. Nikiforov, V. B. Uvarov. Special functions of mathematical physics. Birkhäuser Verlag, Basel, 1988. https://doi.org/10.1007/978-1-4757-1595-8.

E. J. Routh. On some properties of certain solutions of a differential equation of the second order. Proceedings of the London Mathematical Society 16:245–262, 1884/85. https://doi.org/10.1112/plms/s1-16.1.245.

N. Saad, R. L. Hall, H. Ciftci. Criterion for polynomial solutions to a class of linear differential equations of second order. Journal of Physics A: Mathematical and General 39(43):13445–13454, 2006. https://doi.org/10.1088/0305-4470/39/43/004.

N. Saad, R. L. Hall, V. A. Trenton. Polynomial solutions for a class of second-order linear differential equations. Applied Mathematics and Computation 226:615–634, 2014. https://doi.org/10.1016/j.amc.2013.10.056.

A. Ronveaux (ed.). Heun’s differential equations. Oxford University Press, New York, 1995.

S. Y. Slavyanov, W. Lay. Special functions: a unified theory based on singularities. Oxford University Press, Oxford, 2000. ISBN 0-19-850573-6.

A. Decarreau, M.-C. Dumont-Lepage, P. Maroni, et al. Formes canoniques des équations confluentes de l’équation de Heun. Annales de la Societé Scientifique de Bruxelles Série I Sciences Mathématiques, Astronomiques et Physiques 92(1-2):53–78, 1978.

A. Decarreau, P. Maroni, A. Robert. Sur les équations confluentes de l’équation de Heun. Annales de la Societé Scientifique de Bruxelles Série I Sciences Mathématiques, Astronomiques et Physiques 92(3):151–189, 1978.

K. Heun. Zur Theorie der Riemann’schen Functionen zweiter Ordnung mit vier Verzweigungspunkten. Mathematische Annalen 33(2):161–179, 1888. https://doi.org/10.1007/BF01443849.

F. Beukers, A. van der Waall. Lamé equations with algebraic solutions. Journal of Differential Equations 197(1):1–25, 2004. https://doi.org/10.1016/j.jde.2003.10.017.

A. Turbiner. On polynomial solutions of differential equations. Journal of Mathematical Physics 33(12):3989–3993, 1992. https://doi.org/10.1063/1.529848.

R. V. Craster, V. H. Hoàng. Applications of Fuchsian differential equations to free boundary problems. Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences 454(1972):1241–1252, 1998. https://doi.org/10.1098/rspa.1998.0204.

P. P. Fiziev. The Heun functions as a modern powerful tool for research in different scientific domains, 2015. arXiv:1512.04025v1.

Mathematical physics. In U. Camcı, I. Semiz (eds.), Proceedings of the 13th Regional Conference held in Antalya, October 27–31, 2010, pp. 23–39. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. https://doi.org/10.1142/8566.

H. Ciftci, R. L. Hall, N. Saad, E. Dogu. Physical applications of second-order linear differential equations that admit polynomial solutions. Journal of Physics A: Mathematical and Theoretical 43(41):415206, 14, 2010. https://doi.org/10.1088/1751-8113/43/41/415206.

Y.-Z. Zhang. Exact polynomial solutions of second order differential equations and their applications. Journal of Physics A: Mathematical and Theoretical 45(6):065206, 2012. https://doi.org/10.1088/1751-8113/45/6/065206.

B.-H. Chen, Y. Wu, Q.-T. Xie. Heun functions and quasi-exactly solvable double-well potentials. Journal of Physics A: Mathematical and Theoretical 46(3):035301, 2013. https://doi.org/10.1088/1751-8113/46/3/035301.

F. Caruso, J. Martins, V. Oguri. Solving a two-electron quantum dot model in terms of polynomial solutions of a Biconfluent Heun equation. Annals of Physics 347:130–140, 2014. https://doi.org/10.1016/j.aop.2014.04.023.

A. V. Turbiner. One-dimensional quasi-exactly solvable Schrödinger equations. Physics Reports A Review Section of Physics Letters 642:1–71, 2016. https://doi.org/10.1016/j.physrep.2016.06.002.

H. Karayer, D. Demirhan, F. Büyükkılıç. Solution of Schrödinger equation for two different potentials using extended Nikiforov-Uvarov method and polynomial solutions of biconfluent Heun equation. Journal of Mathematical Physics 59(5):053501, 2018. https://doi.org/10.1063/1.5022008.

H. Ciftci, R. L. Hall, N. Saad. Asymptotic iteration method for eigenvalue problems. Journal of Physics A: Mathematical and General 36(47):11807–11816, 2003. https://doi.org/10.1088/0305-4470/36/47/008.

H. Scheffé. Linear differential equations with two-term recurrence formulas. Journal of Mathematics and Physics 21(1-4):240–249, 1942. https://doi.org/10.1002/sapm1942211240.

R. S. Irving. Integers, polynomials, and rings. Springer-Verlag, New York, 2004. https://doi.org/10.1007/b97633.

F. M. Arscott. Latent roots of tri-diagonal matrices. Edinburgh Mathematical Notes 44:5–7, 1961. https://doi.org/10.1017/S095018430000330X.

J. Favard. Sur les polynômes de Tchebicheff. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Paris 200:2052–2053, 1935.

F. Marcellán, R. Álvarez Nodarse. On the “Favard theorem” and its extensions. Journal of Computational and Applied Mathematics 127(1-2):231–254, 2001. https://doi.org/10.1016/S0377-0427(00)00497-0.

M. E. H. Ismail. Classical and quantum orthogonal polynomials in one variable. Cambridge University Press, Cambridge, 2009.

A. Krajewska, A. Ushveridze, Z. Walczak. Bender-Dunne orthogonal polynomials general theory. Modern Physics Letters A 12(16):1131–1144, 1997. https://doi.org/10.1142/S0217732397001163.

Downloads

Published

2022-02-28

How to Cite

Saad, N. (2022). On generalized Heun equation with some mathematical properties. Acta Polytechnica, 62(1), 165–189. https://doi.org/10.14311/AP.2022.62.0165

Issue

Section

Analytic and Algebraic Methods in Physics