Maxwell-Chern-Simons-Higgs theory
DOI:
https://doi.org/10.14311/AP.2022.62.0085Keywords:
electrodynamics, Higgs theories, Chern-Simons-Higgs theories, Hamiltonian formulations, gauge-theoriesAbstract
We consider the three dimensional electrodynamics described by a complex scalar field coupled with the U(1) gauge field in the presence of a Maxwell term, a Chern-Simons term and the Higgs potential. The Chern-Simons term provides a velocity dependent gauge potential and the presence of the Maxwell term makes the U(1) gauge field dynamical. We study the Hamiltonian formulation of this Maxwell-Chern-Simons-Higgs theory under the appropriate gauge fixing conditions.
Downloads
References
P. A. M. Dirac. Generalized Hamiltonian dynamics. Canadian Journal of Mathematics 2:129–148, 1950. https://doi.org/10.4153/cjm-1950-012-1.
V. L. Ginzburg, L. D. Landau. On the theory of superconductivity (in Russian). Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 20:1064–1082, 1950.
A. A. Abrikosov. On the magnetic properties of superconductors of the second group. Soviet Physics JETP 5:1174–1182, 1957.
H. B. Nielson, P. Olsen. Vortex line models for dual strings. Nuclear Physics B 61:45–61, 1973.
C. Becchi, A. Rouet, R. Stora. The abelian Higgs Kibble model, unitarity of the S-operator. Physics Letters B 52(3):344–346, 1974. https://doi.org/10.1016/0370-2693(74)90058-6.
E. B. Bogomolnyi. The stability of classical solutions. Soviet Journal of Nuclear Physics 24(4):449–458, 1976.
S. Deser, R. Jackiw, S. Templeton. Three-dimensional massive gauge theories. Physical Review Letters 48:975–978, 1982. Annals of Physics, 140:372, 1982, https://doi.org/10.1103/PhysRevLett.48.975.
F. Wilczek. Quantum mechanics of fractional-spin particles. Physical Review Letters 49:957–959, 1982. https://doi.org/10.1103/PhysRevLett.49.957.
A. J. Niemi, G. W. Semenoff. Axial-anomaly-induced fermion fractionization and effective gauge-theory actions in odd-dimensional space-times. Physical Review Letters 51:2077–2080, 1983. https://doi.org/10.1103/PhysRevLett.51.2077.
A. N. Redlich. Gauge noninvariance and parity nonconservation of three-dimensional fermions. Physical Review Letters 52:18–21, 1984. https://doi.org/10.1103/PhysRevLett.52.18.
K. Ishikawa. Chiral anomaly and quantized Hall effect. Physical Review Letters 53:1615–1618, 1984. https://doi.org/10.1103/PhysRevLett.53.1615.
G. W. Semenoff, P. Sodano. Non-Abelian adiabatic phases and the fractional quantum Hall effect. Physical Review Letters 57:1195–1198, 1986. https://doi.org/10.1103/PhysRevLett.57.1195.
L. Jacobs, C. Rebbi. Interaction energy of superconducting vortices. Physical Review B 19:4486–4494, 1979. https://doi.org/10.1103/PhysRevB.19.4486.
I. V. Krive, A. S. Rozhavski˘ı. Fractional charge in quantum field theory and solid-state physics. Soviet Physics Uspekhi 30(5):370, 1987. https://doi.org/10.1070/PU1987v030n05ABEH002884.
A. L. Fetter, C. B. Hanna, R. B. Laughlin. Random-phase approximation in the fractional-statistics gas. Physical Review B 39:9679–9681, 1989. https://doi.org/10.1103/PhysRevB.39.9679.
T. Banks, J. D. Lykken. Landau-Ginzburg description of anyonic superconductors. Nuclear Physics B 336(3):500–516, 1990. https://doi.org/10.1016/0550-3213(90)90439-K.
G. V. Dunne, C. A. Trugenberger. Self-duality and nonrelativistic Maxwell-Chern-Simons solitons. Physical Review D 43:1323–1331, 1991. https://doi.org/10.1103/PhysRevD.43.1323.
S. Forte. Quantum mechanics and field theory with fractional spin and statistics. Reviews of Modern Physics 64:193–236, 1992. https://doi.org/10.1103/RevModPhys.64.193.
U. Kulshreshtha. Hamiltonian and BRST formulations of the two-dimensional Abelian Higgs model. Canadian Journal of Physics 78(1):21–31, 2000. https://doi.org/10.1139/p00-002.
U. Kulshreshtha. Hamiltonian and BRST formulations of the Nielsen-Olesen model. International Journal of Theoretical Physics 41(2):273–291, 2002. https://doi.org/10.1023/A:1014058806710.
U. Kulshreshtha, D. S. Kulshreshtha. Hamiltonian, path integral, and BRST formulations of the Chern–Simons theory under appropriate gauge-fixing. Canadian Journal of Physics 86(2):401–407, 2008. https://doi.org/10.1139/p07-176.
U. Kulshreshtha, D. S. Kulshreshtha, H. J. W. Mueller-Kirsten, J. P. Vary. Hamiltonian, path integral and BRST formulations of the Chern–Simons–Higgs theory under appropriate gauge fixing. Physica Scripta 79(4):045001, 2009. https://doi.org/10.1088/0031-8949/79/04/045001.
H. J. W. Mueller-Kirsten. Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral. World Scientific, Singapore, 2006. ISBN 9789814397735.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Usha Kulshreshtha, Daya Shankar Kulshreshtha, Bheemraj Sihagb
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Accepted 2022-01-25
Published 2022-02-28