A note on entanglement classification for tripartite mixed states


  • Hui Zhao Beijing University of Technology, Faculty of Science, Beijing 100124, China
  • Yu-Qiu Liu Beijing University of Technology, Faculty of Science, Beijing 100124, China
  • Zhi-Xi Wang Capital Normal University, School of Mathematical Sciences, Beijing 100037, China
  • Shao-Ming Fei Capital Normal University, School of Mathematical Sciences, Beijing 100037, China




bell inequalities, separability, principal basis


We study the classification of entanglement in tripartite systems by using Bell-type inequalities and principal basis. By using Bell  unctions and the generalized three dimensional Pauli operators, we present a set of Bell inequalities which classifies the entanglement of triqutrit fully separable and bi-separable mixed states. By using the correlation tensors in the principal basis representation of density matrices, we obtain separability criteria for fully separable and bi-separable 2 ⊗ 2 ⊗ 3 quantum mixed states. Detailed example is given to illustrate our criteria in classifying the tripartite entanglement.


Download data is not yet available.


A. Einstein, B. Podolsky, N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Physical Review 47(10):777–780, 1935. https://doi.org/10.1103/PhysRev.47.777.

J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics 1(3):195–200, 1964. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195.

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt. Proposed experiment to test local hidden-variable theories. Physical Review Letters 23(15):880–884, 1969. https://doi.org/10.1103/PhysRevLett.23.880.

P. Y. Chang, S. K. Chu, C. T. Ma. Bell’s inequality and entanglement in qubits. Journal of High Energy Physics volume 2017(9):100, 2017. https://doi.org/10.1007/JHEP09(2017)100.

M. Li, S. M. Fei. Bell inequalities for multipartite qubit quantum systems and their maximal violation. Physical Review A 86(5):052119, 2012. https://doi.org/10.1103/PhysRevA.86.052119.

D. Collins, N. Gisin, S. Popescu, et al. Bell-type inequalities to detect true n-body nonseparability. Physical Review Letters 88(17):170405, 2002. https://doi.org/10.1103/PhysRevLett.88.170405.

S. W. Ji, J. Lee, J. Lim, et al. Multi-setting Bell inequality for qudits. Physical Review A 78(5):052103, 2008. https://doi.org/10.1103/PhysRevA.78.052103.

H. Zhao. Entanglement of Bell diagonal mixed states. Physics Letters A 373(43):3924–3930, 2009. https://doi.org/10.1016/j.physleta.2009.08.048.

D. Ding, Y. Q. He, F. L. Yan, T. Gao. Entanglement measure and quantum violation of Bell-type inequality. International Journal of Theoretical Physics 55(10):4231–4237, 2016. https://doi.org/10.1007/s10773-016-3048-1.

X. F. Huang, N. H. Jing, T. G. Zhang. An upper bound of fully entangled fraction of mixed states. Communications in Theoretical Physics 65(6):701–704, 2016. https://doi.org/10.1088/0253-6102/65/6/701.

J. I. de Vicente, M. Huber. Multipartite entanglement detection from correlation tensors. Physical Review A 84(6):242–245, 2011. https://doi.org/10.1103/PhysRevA.84.062306.

M. Li, J. Wang, S. M. Fei, X. Li-Jost. Quantum separability criteria for arbitrary dimensional multipartite states. Physical Review A 89(2):767–771, 2014. https://doi.org/10.1103/PhysRevA.89.022325.

W. Son, J. Lee, M. S. Kim. Generic Bell inequalities for multipartite arbitrary dimensional systems. Physical Review Letters 96(6):060406, 2006. https://doi.org/10.1103/PhysRevLett.96.060406.

D. Gottesman. Fault-tolerant quantum computation with higher-dimensional systems. Chaos, Solitons & Fractals 10(10):1749–1758, 1999. https://doi.org/10.1016/S0960-0779(98)00218-5.

H. A. Carteret, A. Higuchi, A. Sudbery. Multipartite generalisation of the Schmidt decomposition. Journal of Mathematical Physics 41(12):7932–7939, 2000. https://doi.org/10.1063/1.1319516.




How to Cite

Zhao, H. ., Liu, Y.-Q. ., Wang, Z.-X. ., & Fei, S.-M. (2022). A note on entanglement classification for tripartite mixed states. Acta Polytechnica, 62(1), 222–227. https://doi.org/10.14311/AP.2022.62.0222



Analytic and Algebraic Methods in Physics