A note on entanglement classification for tripartite mixed states

Authors

  • Hui Zhao Beijing University of Technology, Faculty of Science, Beijing 100124, China
  • Yu-Qiu Liu Beijing University of Technology, Faculty of Science, Beijing 100124, China
  • Zhi-Xi Wang Capital Normal University, School of Mathematical Sciences, Beijing 100037, China
  • Shao-Ming Fei Capital Normal University, School of Mathematical Sciences, Beijing 100037, China

DOI:

https://doi.org/10.14311/AP.2022.62.0222

Keywords:

bell inequalities, separability, principal basis

Abstract

We study the classification of entanglement in tripartite systems by using Bell-type inequalities and principal basis. By using Bell  unctions and the generalized three dimensional Pauli operators, we present a set of Bell inequalities which classifies the entanglement of triqutrit fully separable and bi-separable mixed states. By using the correlation tensors in the principal basis representation of density matrices, we obtain separability criteria for fully separable and bi-separable 2 ⊗ 2 ⊗ 3 quantum mixed states. Detailed example is given to illustrate our criteria in classifying the tripartite entanglement.

Downloads

Download data is not yet available.

References

A. Einstein, B. Podolsky, N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Physical Review 47(10):777–780, 1935. https://doi.org/10.1103/PhysRev.47.777.

J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics 1(3):195–200, 1964. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195.

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt. Proposed experiment to test local hidden-variable theories. Physical Review Letters 23(15):880–884, 1969. https://doi.org/10.1103/PhysRevLett.23.880.

P. Y. Chang, S. K. Chu, C. T. Ma. Bell’s inequality and entanglement in qubits. Journal of High Energy Physics volume 2017(9):100, 2017. https://doi.org/10.1007/JHEP09(2017)100.

M. Li, S. M. Fei. Bell inequalities for multipartite qubit quantum systems and their maximal violation. Physical Review A 86(5):052119, 2012. https://doi.org/10.1103/PhysRevA.86.052119.

D. Collins, N. Gisin, S. Popescu, et al. Bell-type inequalities to detect true n-body nonseparability. Physical Review Letters 88(17):170405, 2002. https://doi.org/10.1103/PhysRevLett.88.170405.

S. W. Ji, J. Lee, J. Lim, et al. Multi-setting Bell inequality for qudits. Physical Review A 78(5):052103, 2008. https://doi.org/10.1103/PhysRevA.78.052103.

H. Zhao. Entanglement of Bell diagonal mixed states. Physics Letters A 373(43):3924–3930, 2009. https://doi.org/10.1016/j.physleta.2009.08.048.

D. Ding, Y. Q. He, F. L. Yan, T. Gao. Entanglement measure and quantum violation of Bell-type inequality. International Journal of Theoretical Physics 55(10):4231–4237, 2016. https://doi.org/10.1007/s10773-016-3048-1.

X. F. Huang, N. H. Jing, T. G. Zhang. An upper bound of fully entangled fraction of mixed states. Communications in Theoretical Physics 65(6):701–704, 2016. https://doi.org/10.1088/0253-6102/65/6/701.

J. I. de Vicente, M. Huber. Multipartite entanglement detection from correlation tensors. Physical Review A 84(6):242–245, 2011. https://doi.org/10.1103/PhysRevA.84.062306.

M. Li, J. Wang, S. M. Fei, X. Li-Jost. Quantum separability criteria for arbitrary dimensional multipartite states. Physical Review A 89(2):767–771, 2014. https://doi.org/10.1103/PhysRevA.89.022325.

W. Son, J. Lee, M. S. Kim. Generic Bell inequalities for multipartite arbitrary dimensional systems. Physical Review Letters 96(6):060406, 2006. https://doi.org/10.1103/PhysRevLett.96.060406.

D. Gottesman. Fault-tolerant quantum computation with higher-dimensional systems. Chaos, Solitons & Fractals 10(10):1749–1758, 1999. https://doi.org/10.1016/S0960-0779(98)00218-5.

H. A. Carteret, A. Higuchi, A. Sudbery. Multipartite generalisation of the Schmidt decomposition. Journal of Mathematical Physics 41(12):7932–7939, 2000. https://doi.org/10.1063/1.1319516.

Downloads

Published

2022-02-28

Issue

Section

Analytic and Algebraic Methods in Physics

How to Cite

Zhao, H. ., Liu, Y.-Q. ., Wang, Z.-X. ., & Fei, S.-M. (2022). A note on entanglement classification for tripartite mixed states. Acta Polytechnica, 62(1), 222-227. https://doi.org/10.14311/AP.2022.62.0222