Swanson Hamiltonian revisited through the complex scaling method


  • Marta Reboiro University of La Plata, Faculty of Exact Science, Department of Physics, 49 & 115, 1900 La Plata, Argentine; CONICET, Institute of Physics of La Plata. 63 & diag. 113, 1900 La Plata, Argentine
  • Romina Ramírez University of La Plata, Faculty of Exact Science, Department of Mathematics, 50 & 115, 1900 La Plata, Argentine; CONICET, Institute Argentine of Mathematics. Saavedra 15 3º, C1083ACA Buenos Aires, Argentine
  • Viviano Fernández University of La Plata, Faculty of Exact Science, Department of Mathematics, 50 & 115, 1900 La Plata, Argentine




PT-symmetric Hamiltonians, Swanson model, Complex Scaling Method


In this work, we study the non-hermitian PT-symmetry Swanson Hamiltonian in the framework of the Complex Scaling Method. We show that by applying this method we can work with eigenfunctions that are square-integrable both in the PT and in the non-PT symmetry phase.


Download data is not yet available.


M. S. Swanson. Transition elements for a non-Hermitian quadratic Hamiltonian. Journal of Mathematical Physics 45(2):585–601, 2004. https://doi.org/10.1063/1.1640796.

C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters 80(24):5243–5246, 1998. https://doi.org/10.1103/PhysRevLett.80.5243.

C. M. Bender, M. V. Berry, A. Mandilara. Generalized PT symmetry and real spectra. Journal of Physics A: Mathematical and General 35(31):L467–L471, 2002. https://doi.org/10.1088/0305-4470/35/31/101.

C. Bender, B. Berntson, D. Parker, E. Samuel. Observation of PT phase transition in a simple mechanical system. American Journal of Physics 81(3):173–179, 2013. https://doi.org/10.1119/1.4789549.

C. M. Bender, M. Gianfreda, Ş. K. Özdemir, et al. Twofold transition in PT -symmetric coupled oscillators. Physical Review A 88(6):062111, 2013. https://doi.org/10.1103/PhysRevA.88.062111.

A. Beygi, S. P. Klevansky, C. M. Bender. Coupled oscillator systems having partial PT symmetry. Physical Review A 91(6):062101, 2015. https://doi.org/10.1103/PhysRevA.91.062101.

Z. Wen, C. M. Bender. PT -symmetric potentials having continuous spectra. Journal of Physics A: Mathematical and Theoretical 53(37):375302, 2020. https://doi.org/10.1088/1751-8121/aba468.

C. M. Bender, H. F. Jones. Interactions of Hermitian and non-Hermitian Hamiltonians. Journal of Physics A: Mathematical and Theoretical 41(24):244006, 2008. https://doi.org/10.1088/1751-8113/41/24/244006.

A. Sinha, R. Roychoudhury. Isospectral partners of a complex PT-invariant potential. Physics Letters A 301(3-4):163–172, 2002. https://doi.org/10.1016/S0375-9601(02)00736-3.

A. Sinha, P. Roy. Generalized Swanson models and their solutions. Journal of Physics A: Mathematical and Theoretical 40(34):10599–10610, 2007. https://doi.org/10.1088/1751-8113/40/34/015.

A. Sinha, P. Roy. Pseudo supersymmetric partners for the generalized Swanson model. Journal of Physics A: Mathematical and Theoretical 41(33):335306, 2008. https://doi.org/10.1088/1751-8113/41/33/335306.

H. F. Jones. On pseudo-Hermitian Hamiltonians and their Hermitian counterparts. Journal of Physics A: Mathematical and General 38(8):1741–1746, 2005. https://doi.org/10.1088/0305-4470/38/8/010.

Ö. Yeşiltaş. Quantum isotonic nonlinear oscillator as a Hermitian counterpart of Swanson Hamiltonian and pseudo-supersymmetry. Journal of Physics A: Mathematical and Theoretical 44(30):305305, 2011. https://doi.org/10.1088/1751-8113/44/30/305305.

P. E. G. Assis, A. Fring. Metrics and isospectral partners for the most generic cubic PT -symmetric non-Hermitian Hamiltonian. Journal of Physics A: Mathematical and Theoretical 41(24):244001, 2008. https://doi.org/10.1088/1751-8113/41/24/244001.

B. Midya, P. P. Dube, R. Roychoudhury. Nonisospectrality of the generalized Swanson Hamiltonian and harmonic oscillator. Journal of Physics A: Mathematical and Theoretical 44(6):062001, 2011. https://doi.org/10.1088/1751-8113/44/6/062001.

A. Mostafazadeh. Metric operators for quasi-Hermitian Hamiltonians and symmetries of equivalent Hermitian Hamiltonians. Journal of Physics A: Mathematical and Theoretical 41(24):244017, 2008. https://doi.org/10.1088/1751-8113/41/24/244017.

A. Mostafazadeh. Pseudo-Hermitian representation of quantum mechanics. International Journal of Geometric Methods in Modern Physics 07(07):1191–1306, 2010. https://doi.org/10.1142/S0219887810004816.

M. Znojil. Complete set of inner products for a discrete PT -symmetric square-well Hamiltonian. Journal of Mathematical Physics 50(12):122105, 2009. https://doi.org/10.1063/1.3272002.

B. Bagchi, A. Fring. Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems. Physics Letters A 373(47):4307–4310, 2009. https://doi.org/10.1016/j.physleta.2009.09.054.

A. Sinha, P. Roy. Generalized Swanson model and its pseudo supersymmetric partners. In Recent Developments in Theoretical Physics, pp. 222–234. Indian Statistical Institute, India, 2009. https://doi.org/10.1142/9789814287333_0010.

B. Bagchi, I. Marquette. New 1-step extension of the Swanson oscillator and superintegrability of its two-dimensional generalization. Physics Letters A 379(26-27):1584–1588, 2015. https://doi.org/10.1016/j.physleta.2015.04.009.

S. Dey, A. Fring, L. Gouba. Milne quantization for non-Hermitian systems. Journal of Physics A: Mathematical and Theoretical 48(40):40FT01, 2015. https://doi.org/10.1088/1751-8113/48/40/40ft01.

J. da Providência, N. Bebiano, J. P. da Providência. Non-Hermitian Hamiltonians with real spectrum in quantum mechanics. Brazilian Journal of Physics 41:78–85, 2011. https://doi.org/10.1007/s13538-011-0010-9.

F. Bagarello. Examples of pseudo-bosons in quantum mechanics. Physics Letters A 374(37):3823–3827, 2010. https://doi.org/10.1016/j.physleta.2010.07.044.

F. Bagarello, J. Feinberg. Bicoherent-state path integral quantization of a non-hermitian hamiltonian. Annals of Physics 422:168313, 2020. https://doi.org/10.1016/j.aop.2020.168313.

V. Fernández, R. Ramírez, M. Reboiro. Swanson Hamiltonian: non-PT-symmetry phase. Journal of Physics A: Mathematical and Theoretical 55(1):015303, 2022. https://doi.org/10.1088/1751-8121/ac3a35.

J. Aguilar, J. M. Combes. A class of analytic perturbations for one-body Schrödinger Hamiltonians. Communications in Mathematical Physics 22:269–279, 1971. https://doi.org/10.1007/BF01877510.

E. Balslev, J. M. Combes. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Communications in Mathematical Physics 22:280–294, 1971. https://doi.org/10.1007/BF01877511.

B. Simon. Quadratic form techniques and the Balslev-Combes theorem. Communications in Mathematical Physics 27:1–9, 1972. https://doi.org/10.1007/BF01649654.

H. Feshbach. A unified theory of nuclear reactions. II. Annals of Physics 19(2):287–313, 1962. https://doi.org/10.1016/0003-4916(62)90221-X.

Y. Ho. The method of complex coordinate rotation and its applications to atomic collision processes. Physics Reports 99(1):1–68, 1983. https://doi.org/10.1016/0370-1573(83)90112-6.

T. Myo, K. Katõ. Complex scaling: Physics of unbound light nuclei and perspective. Progress of Theoretical and Experimental Physics 2020(12):12A101, 2020.

I. M. Gel’fand, G. Shilov. Generalized Functions Vol. I. Academic Press, New York and London, 1964.

A. Bohm, J. D. Dollard, M. Gadella. Dirac Kets, Gamow vectors and Gelfand Triplets. Lecture Notes in Physics Vol. 348. Springer, 1989.

A. Mostafazadeh. Pseudo-Hermiticity versus PTsymmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. Journal of Mathematical Physics 43(5):2814–2816, 2002. https://doi.org/10.1063/1.1461427.

F. Bagarello, J. P. Gazeau, F. H. Szafraniec, M. Znojil. Non-selfadjoint operators in quantum physics: Mathematical Aspects. John Wiley & Sons, USA, 2015.

T. Y. Azizov, I. S. Iokhvidov. Linear Operators in spaces with an indefinite metric. John Wiley & Sons, USA, 1989.

U. Günther, B. F. Samsonov. Naimark-dilated PT -symmetric brachistochrone. Physical Review Letters 101:230404, 2008. https://doi.org/10.1103/PhysRevLett.101.230404.

U. Günther, S. Kuzhel. PT -symmetry, Cartan decompositions, Lie triple systems and Krein space-related Clifford algebras. Journal of Physics A: Mathematical and Theoretical 43(39):392002, 2010. https://doi.org/10.1088/1751-8113/43/39/392002.

A. Dijksma, H. Langer. Operator theory and ordinary differential operators. American Mathematical Society, Providence, RI, 1996.

F. S. U. Günther. IR-truncated PT -symmetric ix3 model and its asymptotic spectral scaling graph. arXiv:1901.08526.

D. Chruściński. Quantum mechanics of damped systems. Journal of Mathematical Physics 44(9):3718–3733, 2003. https://doi.org/10.1063/1.1599074.

D. Chruściński. Quantum mechanics of damped systems. II. Damping and parabolic potential barrier. Journal of Mathematical Physics 45(3):841–854, 2004. https://doi.org/10.1063/1.1644751.

G. Marcucci, C. Conti. Irreversible evolution of a wave packet in the rigged-Hilbert-space quantum mechanics. Physical Review A 94:052136, 2016. https://doi.org/10.1103/PhysRevA.94.052136.

D. Bermudez, D. J. Fernández C. Factorization method and new potentials from the inverted oscillator. Annals of Physics 333:290–306, 2013. https://doi.org/10.1016/j.aop.2013.02.015.

S. Dey, A. Fring. Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations. Physical Review D 86:064038, 2012. https://doi.org/10.1103/PhysRevD.86.064038.

S. Dey, A. Fring, B. Khantoul. Hermitian versus non-Hermitian representations for minimal length uncertainty relations. Journal of Physics A: Mathematical and Theoretical 46(33):335304, 2013. https://doi.org/10.1088/1751-8113/46/33/335304.

L. L. Foldy, D. Walecka. On the theory of the optical potential. Annals of Physics 54(2):403, 1969. https://doi.org/10.1016/0003-4916(69)90161-4.

J. Rotureau, P. Danielewicz, G. Hagen, et al. Optical potential from first principles. Physical Review C 95:024315, 2017. https://doi.org/10.1103/PhysRevC.95.024315.

R. Ramírez, M. Reboiro. Squeezed states from a quantum deformed oscillator Hamiltonian. Physics Letters A 380(11-12):1117–1124, 2016. https://doi.org/10.1016/j.physleta.2016.01.027.




How to Cite

Reboiro, M., Ramírez, R., & Fernández, V. (2022). Swanson Hamiltonian revisited through the complex scaling method. Acta Polytechnica, 62(1), 157–164. https://doi.org/10.14311/AP.2022.62.0157



Analytic and Algebraic Methods in Physics