Complex topological soliton with real energy in particle physics

Authors

  • Takanobu Taira City, University of London, Department of Mathematics, Northampton Square, London EC1V 0HB, UK

DOI:

https://doi.org/10.14311/AP.2022.62.0197

Keywords:

t’Hooft-Polyakov monopole, quantum field theory, non-Hermitian quantum field theory

Abstract

We summarise the procedure used to find the classical masses of Higgs particle, massive gauge boson and t’Hooft-Polyakov monopole in non-Hermitian gauge field theory. Their physical regions are explored, and the mechanism of the real value of the monopole solution is analysed in different physical regions.

Downloads

Download data is not yet available.

References

J. Alexandre, P. Millington, D. Seynaeve. Symmetries and conservation laws in non-Hermitian field theories. Physical Review D 96(6):065027, 2017. https://doi.org/10.1103/PhysRevD.96.065027.

J. Alexandre, J. Ellis, P. Millington, D. Seynaeve. Spontaneous symmetry breaking and the Goldstone theorem in non-Hermitian field theories. Physical Review D 98(4):045001, 2018. https://doi.org/10.1103/PhysRevD.98.045001.

P. D. Mannheim. Goldstone bosons and the Englert-Brout-Higgs mechanism in non-Hermitian theories. Physical Review D 99(4):045006, 2019. https://doi.org/10.1103/PhysRevD.99.045006.

P. Millington. Symmetry properties of non-Hermitian PT -symmetric quantum field theories. Journal of Physics: Conference Series 1586(1):012001, 2020. https://doi.org/10.1088/1742-6596/1586/1/012001.

J. Alexandre, J. Ellis, P. Millington, D. Seynaeve. Spontaneously breaking non-Abelian gauge symmetry in non-Hermitian field theories. Physical Review D 101(3):035008, 2019. https://doi.org/10.1103/PhysRevD.101.035008.

J. Alexandre, J. Ellis, P. Millington, D. Seynaeve. Gauge invariance and the Englert-Brout-Higgs mechanism in non-Hermitian field theories. Physical Review D 99(7):075024, 2019. https://doi.org/10.1103/PhysRevD.99.075024.

J. Alexandre, J. Ellis, P. Millington. Discrete spacetime symmetries and particle mixing in non- ermitian scalar quantum field theories. Physical Review D 102(12):125030, 2020. https://doi.org/10.1103/PhysRevD.102.125030.

A. Fring, T. Taira. Goldstone bosons in different PT -regimes of non-Hermitian scalar quantum field theories. Nuclear Physics B 950:114834, 2020. https://doi.org/10.1016/j.nuclphysb.2019.114834.

A. Fring, T. Taira. Massive gauge particles versus Goldstone bosons in non-Hermitian non-abelian gauge theory, 2020. arXiv:2004.00723.

A. Fring, T. Taira. Pseudo-Hermitian approach to Goldstone’s theorem in non-Abelian non-Hermitian quantum field theories. Physical Review D 101(4):045014, 2020. https://doi.org/10.1103/PhysRevD.101.045014.

A. Fring, T. Taira. ’t Hooft-Polyakov monopoles in non-Hermitian quantum field theory. Physics Letters B 807:135583, 2020. https://doi.org/10.1016/j.physletb.2020.135583.

J. Alexandre, J. Ellis, P. Millington. PT -symmetric non-Hermitian quantum field theories with supersymmetry. Physical Review D 101(8):085015, 2020. https://doi.org/10.1103/PhysRevD.101.085015.

M. N. Chernodub, A. Cortijo, M. Ruggieri. Spontaneous non-hermiticity in the Nambu–Jona-Lasinio model. Physical Review D 104(5):056023, 2021. https://doi.org/10.1103/PhysRevD.104.056023.

M. N. Chernodub, P. Millington. IR/UV mixing from local similarity maps of scalar non-Hermitian field theories, 2021. arXiv:2110.05289.

A. Fring. PT -symmetric deformations of the Korteweg-de Vries equation. Journal of Physics A: Mathematical and Theoretical 40(15):4215–4224, 2007. https://doi.org/10.1088/1751-8113/40/15/012.

F. G. Scholtz, H. B. Geyer, F. J. W. Hahne. Quasi-Hermitian operators in quantum mechanics and the variational principle. Annals of Physics 213(1):74–101, 1992. https://doi.org/10.1016/0003-4916(92)90284-S.

J. Dieudonné. Quasi-Hermitian operators. Proceedings of the International Symposium on Linear Spaces, Jerusalem 1960, Pergamon, Oxford pp. 115–122, 1961.

M. Froissart. Covariant formalism of a field with indefinite metric. Il Nuovo Cimento 14:197–204, 1959. https://doi.org/10.1007/BF02724848.

F. J. Dyson. Thermodynamic behavior of an ideal ferromagnet. Physical Review 102(5):1230–1244, 1956. https://doi.org/10.1103/PhysRev.102.1230.

T. Marumori, M. Yamamura, A. Tokunaga. On the “anharmonic effects” on the collective oscillations in spherical even nuclei. I. Progress of Theoretical Physics 31(6):1009–1025, 1964. https://doi.org/10.1143/PTP.31.1009.

S. T. Beliaev, V. G. Zelevinsky. Anharmonic effects of quadrupole oscillations of spherical nuclei. Nuclear Physics 39:582–604, 1962. https://doi.org/10.1016/0029-5582(62)90416-9.

D. Janssen, F. Dönau, S. Frauendorf, R. Jolos. Boson description of collective states. Nuclear Physics A 172(1):145–165, 1971. https://doi.org/10.1016/0375-9474(71)90122-9.

A. Fring, T. Taira. Non-Hermitian gauge field theories and BPS limits. Journal of Physics: Conference Series 2038(1):012010, 2021. https://doi.org/10.1088/1742-6596/2038/1/012010.

D. P. Musumbu, H. B. Geyer, W. D. Heiss. Choice of a metric for the non-Hermitian oscillator. Journal of Physics A: Mathematical and Theoretical 40(2):F75–F80, 2007. https://doi.org/10.1088/1751-8113/40/2/F03.

G. H. Derrick. Comments on nonlinear wave equations as models for elementary particles. Journal of Mathematical Physics 5(9):1252–1254, 1964. https://doi.org/10.1063/1.1704233.

M. K. Prasad, C. M. Sommerfield. Exact classical solution for the’t Hooft monopole and the Julia-Zee dyon. Physical Review Letters 35(12):760–762, 1975. https://doi.org/10.1103/PhysRevLett.35.760.

E. B. Bogomolny. The stability of classical solutions. Sov J Nucl Phys(Engl Transl); (United States) 24(4), 1976.

J. Arafune, P. G. O. Freund, C. J. Goebel. Topology of Higgs fields. Journal of Mathematical Physics 16(2):433–437, 1975. https://doi.org/10.1063/1.522518.

T. W. Kirkman, C. K. Zachos. Asymptotic analysis of the monopole structure. Physical Review D 24(4):999–1004, 1981. https://doi.org/10.1103/PhysRevD.24.999.

F. Correa, A. Fring, T. Taira. Complex BPS Skyrmions with real energy. Nuclear Physics B 971(2):115516, 2021. https://doi.org/10.1016/j.nuclphysb.2021.115516.

Downloads

Published

2022-02-28

How to Cite

Taira, T. (2022). Complex topological soliton with real energy in particle physics. Acta Polytechnica, 62(1), 197–207. https://doi.org/10.14311/AP.2022.62.0197

Issue

Section

Analytic and Algebraic Methods in Physics