Generalized three-body harmonic oscillator system: ground state
DOI:
https://doi.org/10.14311/AP.2022.62.0050Keywords:
three-body system, exact-solvability, hidden algebra, integrabilityAbstract
In this work we report on a 3-body system in a d−dimensional space ℝd with a quadratic harmonic potential in the relative distances rij = |ri −rj| between particles. Our study considers unequal masses, different spring constants and it is defined in the three-dimensional (sub)space of solutions characterized (globally) by zero total angular momentum. This system is exactly-solvable with hidden algebra sℓ4(ℝ). It is shown that in some particular cases the system becomes maximally (minimally) superintegrable. We pay special attention to a physically relevant generalization of the model where eventually the integrability is lost. In particular, the ground state and the first excited state are determined within a perturbative framework.
Downloads
References
F. Zernike, H. C. Brinkman. Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome. Koninklijke Nederlandse Akademie van Wetenschappen 38:161–170, 1935.
L. M. Delves. Tertiary and general-order collisions (I). Nuclear Physics 9(3):391–399, 1958. https://doi.org/10.1016/0029-5582(58)90372-9.
F. Smith. A symmetric representation for three-body problems. I. Motion in a plane. Journal of Mathematical Physics 3(4):735, 1962. https://doi.org/10.1063/1.1724275.
A. Turbiner, W. Miller Jr, M. A. Escobar-Ruiz. Three-body problem in d-dimensional space: ground state, (quasi)-exact-solvability. Journal of Mathematical Physics 59(2):022108, 2018. https://doi.org/10.1063/1.4994397.
A. Turbiner, W. Miller Jr, M. A. Escobar-Ruiz. Three-body problem in 3D space: ground state, (quasi)-exact-solvability. Journal of Physics A: Mathematical and Theoretical 50(21):215201, 2017. https://doi.org/10.1088/1751-8121/aa6cc2.
W. Miller Jr, A. Turbiner, M. A. Escobar-Ruiz. The quantum n-body problem in dimension d ≥ n − 1: ground state. Journal of Physics A: Mathematical and Theoretical 51(20):205201, 2018. https://doi.org/10.1088/1751-8121/aabb10.
F. M. Fernández. Born-Oppenheimer approximation for a harmonic molecule. ArXiv:0810.2210v2.
A. V. Turbiner. Quasi-exactly-solvable problems and the sl(2,R) algebra. Communications in Mathematical Physics 118:467–474, 1988. https://doi.org/10.1007/BF01466727.
A. V. Turbiner. One-dimensional quasi-exactly-solvable Schrödinger equations. Physics Reports 642:1–71, 2016. https://doi.org/10.1016/j.physrep.2016.06.002.
L. M. Delves. Tertiary and general-order collisions (II). Nuclear Physics 20:275–308, 1960. https://doi.org/10.1016/0029-5582(60)90174-7.
C. M. Bender, J.-H. Chen, D. W. Darg, K. A. Milton. Classical Trajectories for Complex Hamiltonians. Journal of Physics A: Mathematical and General 39(16):4219–4238, 2006. https://doi.org/10.1088/0305-4470/39/16/009.
C. M. Bender, S. Boettcher. Real spectra in Non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters 80(24):5243–5246, 1998. https://doi.org/10.1103/PhysRevLett.80.5243.
P. Dorey, C. Dunning, R. Tateo. Supersymmetry and the spontaneous breakdown of PT symmetry. Journal of Physics A: Mathematical and General 34(28):L391, 2001. https://doi.org/10.1088/0305-4470/34/28/102.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Adrian M. Escobar-Ruiz, Fidel Montoya
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Accepted 2022-01-06
Published 2022-02-28