Modified Korteweg-de Vries equation as a system with benign ghosts


  • Andrei Smilga University of Nantes, SUBATECH, 4 rue Alfred Kastler, BP 20722, Nantes 44307, France



benign ghosts, KdV equation, integrability


We consider the modified Korteweg-de Vries equation, uxxx + 6u2ux + ut = 0, and explore its dynamics in spatial direction. Higher x derivatives bring about the ghosts. We argue that these ghosts are benign, i.e., the classical dynamics of this system does not involve a blow-up. This probably means that the associated quantum problem is also well defined.


Download data is not yet available.


M. Ostrogradsky. Mémoire sur les équations differéntielles relatives au problème des isopérimètres. Mem Acad St Petersbourg VI(4):385, 1850.

R. P. Woodard. Ostrogradsky’s theorem on Hamiltonian instability. Scholarpedia 10(8):32243, 2015.

M. Raidal, H. Veermae. On the quantisation of complex higher derivative theories and avoiding the Ostrogradsky ghost. Nuclear Physics B 916:607–626, 2017.

A. V. Smilga. Classical and quantum dynamics of higher-derivative systems. International Journal of Modern Physics A 32(33):1730025, 2017.

K. M. Case. Singular potentials. Physical Review 80(5):797–806, 1950.

K. Meetz. Singular potentials in non-relativistic quantum mechanics. Il Nuovo Cimento 34:690–708, 1964.

A. M. Perelomov, V. S. Popov. “Fall to the center” in quantum mechanics. Theoretical and Mathematical Physics 4:664–677, 1970.

L. D. Landau, E. M. Lifshitz. Quantum Mechanics. Elsevier, 1981.

M. Combescure, D. Robert. Coherent States and Applications in Mathematical Physics. Springer, 2012.

A. Pais, G. E. Uhlenbeck. On field theories with non-localized action. Physical Review 79(1):145–165, 1950.

P. D. Mannheim, A. Davidson. Dirac quantization of Pais-Uhlenbeck fourth order oscillator. Physical Review A 71:042110, 2005.

D. Robert, A. V. Smilga. Supersymmetry versus ghosts. Journal of Mathematical Physics 49(4):042104, 2008.

M. Pavšič. Stable self-interacting Pais-Uhlenbeck oscillator. Modern Physics Letters A 28(36):1350165, 2013.

I. B. Ilhan, A. Kovner. Some comments on ghosts and unitarity: The Pais-Uhlenbeck oscillator revisited. Physical Review D 88(4):044045, 2013.

A. V. Smilga. Supersymmetric field theory with benign ghosts. Journal of Physics A: Mathematical and Theoretical 47(5):052001, 2014.

A. V. Smilga. On exactly solvable ghost-ridden systems. Physics Letters A 389:127104, 2021.

C. Deffayet, S. Mukohyama, A. Vikman. Ghosts without runaway instabilities. Physical Review Letters 128(4):041301, 2022.

T. Damour, A. V. Smilga. Dynamical systems with benign ghosts. Physical Review D (in press), arXiv:2110.11175.

P. A. Clarkson. Painlevé equations – nonlinear special functions. Journal of Computational and Applied Mathematics 153(1-2):127–140, 2003.

C. E. Kenig, G. Ponce, L. Vega. Well-posedness of the initial value problem for the Korteweg-de Vries equation. Journal of the American Mathematical Society 4(2):323–347, 1991.




How to Cite

Smilga, A. (2022). Modified Korteweg-de Vries equation as a system with benign ghosts. Acta Polytechnica, 62(1), 190–196.



Analytic and Algebraic Methods in Physics