Linearised coherent states for non-rational SUSY extensions of the harmonic oscillator
DOI:
https://doi.org/10.14311/AP.2022.62.0030Keywords:
supersymmetric quantum mechanics, non-rational extensions, linearised ladder operators, coherent statesAbstract
In this work, we derive two equivalent non-rational extensions of the quantum harmonic oscillator using two different supersymmetric transformations. For these extensions, we built ladder operators as the product of the intertwining operators related with these equivalent supersymmetric transformations, which results in two-step ladder operators. We linearised these operators to obtain operators of the same nature that follow a linear commutation relation. After the linearisation, we derive coherent states as eigenstates of the annigilation operator and analyse some relevant mathematical and physical properties, such as the completeness relation, mean-energy values, temporal stability, time evolution of the probability densities, and Wigner distributions. From these properties, we conclude that these coherent states present both classical and quantum behaviour.
Downloads
References
C. V. Sukumar. Supersymmetric quantum mechanics of one-dimensional systems. Journal of Physics A: Mathematical and General 18(15):2917, 1985. https://doi.org/10.1088/0305-4470/18/15/020.
V. B. Matveev, M. A. Salle. Darboux Transformations and Solitons. Springer Series in Nonlinear Dynamics. Springer Berlin Heidelberg, 1992. ISBN 9783662009246.
F. Cooper, A. Khare, U. Sukhatme. Supersymmetry and quantum mechanics. Physics Reports 251(5-6):267–385, 1995. https://doi.org/10.1016/0370-1573(94)00080-m.
D. J. Fernández C., N. Fernández-García. Higher-order supersymmetric quantum mechanics. AIP Conference Proceedings 744:236–273, 2004. https://doi.org/10.1063/1.1853203.
G. Junker. Supersymmetric Methods in Quantum, Statistical and Solid State Physics. IOP Expanding Physics. Institute of Physics Publishing, 2019. ISBN 9780750320245.
S. Odake, R. Sasaki. Krein-Adler transformations for shape-invariant potentials and pseudo virtual states. Journal of Physics A: Mathematical and Theoretical 46(24):245201, 2013. https://doi.org/10.1088/1751-8113/46/24/245201.
D. Gomez-Ullate, Y. Grandati, R. Milson. Extended Krein-Adler theorem for the translationally shape invariant potentials. Journal of Mathematical Physics 55(4):043510, 2014. https://doi.org/10.1063/1.4871443.
D. Bermudez, D. J. Fernández C. Supersymmetric quantum mechanics and Painlevé IV equation. SIGMA Symmetry, Integrability and Geometry: Methods and Applications 7:025, 2011. https://doi.org/10.3842/sigma.2011.025.
D. Bermudez, D. J. Fernández C., J. Negro. Solutions to the Painlevé V equation through supersymmetric quantum mechanics. Journal of Physics A: Mathematical and Theoretical 49(33):335203, 2016. https://doi.org/10.1088/1751-8113/49/33/335203.
P. Clarkson, D. Gómez-Ullate, Y. Grandati, R. Milson. Cyclic Maya diagrams and rational solutions of higher order Painlevé systems. Studies in Applied Mathematics 144(3):357–385, 2020. https://doi.org/10.1111/sapm.12300.
C. Muro-Cabral. Ladder operators and coherent states for supersymmetric extensions of the harmonic oscillator. Master’s thesis, Physics department, Cinvestav, 2020.
E. Schrödinger. Der stetige Übergang von der Mikrozur Makromechanik. Naturwissenschaften 14(28):664–666, 1926. https://doi.org/10.1007/bf01507634.
R. J. Glauber. Coherent and incoherent states of the radiation field. Physical Review 131(6):2766, 1963. https://doi.org/10.1103/physrev.131.2766.
H. Bergeron, J. P. Gazeau, P. Siegl, A. Youssef. Semi-classical behavior of Pöschl-Teller coherent states. EPL (Europhysics Letters) 92(6):60003, 2011. https://doi.org/10.1209/0295-5075/92/60003.
D. J. Fernández C., L. M. Nieto, O. Rosas-Ortiz. Distorted Heisenberg algebra and coherent states for isospectral oscillator Hamiltonians. Journal of Physics A: Mathematical and General 28(9):2693, 1995. https://doi.org/10.1088/0305-4470/28/9/026.
D. J. Fernández C., V. Hussin, O. Rosas-Ortiz. Coherent states for Hamiltonians generated by supersymmetry. Journal of Physics A: Mathematical and Theoretical 40(24):6491, 2007. https://doi.org/10.1088/1751-8113/40/24/015.
D. Bermudez, A. Contreras-Astorga, D. J. Fernández C. Painlevé IV coherent states. Annals of Physics 350:615–634, 2014. https://doi.org/10.1016/j.aop.2014.07.025.
S. E. Hoffmann, V. Hussin, I. Marquette, Z. Yao-Zhong. Coherent states for ladder operators of general order related to exceptional orthogonal polynomials. Journal of Physics A: Mathematical and Theoretical 51(31):315203, 2018. https://doi.org/10.1088/1751-8121/aacb3b.
S. E. Hoffmann, V. Hussin, I. Marquette, Z. Yao-Zhong. Ladder operators and coherent states for multistep supersymmetric rational extensions of the truncated oscillator. Journal of Mathematical Physics 60(5):052105, 2019. https://doi.org/10.1063/1.5091953.
S. Garneau-Desroches, V. Hussin. Ladder operators and coherent states for the Rosen-Morse system and its rational extensions. Journal of Physics A: Mathematical and Theoretical 54(47):475201, 2021. https://doi.org/10.1088/1751-8121/ac2549.
A. O. Barut, L. Girardello. New “coherent” states associated with non-compact groups. Communications in Mathematical Physics 21(1):41–55, 1971. https://doi.org/10.1007/bf01646483.
A. M. Perelomov. Coherent states for arbitrary Lie group. Communications in Mathematical Physics 26(3):222–236, 1972. https://doi.org/10.1007/bf01645091.
M. M. Nieto, L. M. Simmons. Coherent states for general potentials. I. Formalism. Physical Review D 20:1321–1331, 1979. https://doi.org/10.1103/physrevd.20.1321.
V. V. Dodonov, E. V. Kurmyshev, V. I. Manko. Generalized uncertainty relation and correlated coherent states. Physics Letters A 79(2-3):150–152, 1980. https://doi.org/10.1016/0375-9601(80)90231-5.
J. P. Gazeau, J. R. Klauder. Coherent states for systems with discrete and continuous spectrum. Journal of Physics A: Mathematical and General 32(1):123, 1999. https://doi.org/10.1088/0305-4470/32/1/013.
D. J. Fernández C. Integrability, Supersymmetry and Coherent States: A Volume in Honour of Professor Véronique Hussin, chap. Trends in Supersymmetric Quantum Mechanics, pp. 37–68. Springer International Publishing, Cham, 2019. https://doi.org/10.1007/978-3-030-20087-9_2.
M. Abramowitz, I. A. Stegun (eds.). Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover, 1965.
V. E. Adler. A modification of Crum’s method. Theoretical and Mathematical Physics 101(3):1381–1386, 1994. https://doi.org/10.1007/bf01035458.
K.-H. Kwon, L. L. Littlejohn. Classification of classical orthogonal polynomials. Journal of the Korean Mathematical Society 34(4):973–1008, 1997.
N. N. Lebedev, R. A. Silverman. Special functions and their applications. Physics Today 18(12):70–72, 1965. https://doi.org/10.1063/1.3047047.
L. Weisner. Generating functions for Hermite functions. Canadian Journal of Mathematics 11:141–147, 1959. https://doi.org/10.4153/cjm-1959-018-4.
I. Marquette, C. Quesne. New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems. Journal of mathematical physics 54(10):102102, 2013. https://doi.org/10.1063/1.4823771.
J. M. Carballo, D. J. Fernández C., J. Negro, L. M. Nieto. Polynomial Heisenberg algebras. Journal of Physics A: Mathematical and General 37(43):10349, 2004. https://doi.org/10.1088/0305-4470/37/43/022.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Alonso Contreras-Astorga, David J. Fernández C., César Muro-Cabral
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Accepted 2022-01-16
Published 2022-02-28