Photonic graphene under strain with position-dependent gain and loss

Authors

  • Miguel Castillo-Celeita Cinvestav, Physics Department, P.O. Box. 14-740, 07000 Mexico City, Mexico
  • Alonso Contreras-Astorga Cinvestav, CONACyT – Physics Department, P.O. Box. 14-740, 07000 Mexico City, Mexico
  • David J. Fernández C. Cinvestav, Physics Department, P.O. Box. 14-740, 07000 Mexico City, Mexico

DOI:

https://doi.org/10.14311/AP.2022.62.0023

Keywords:

graphene, Dirac materials, photonic graphene, matrix supersymmetric, quantum mechanics

Abstract

We work with photonic graphene lattices under strain with gain and loss, modeled by the Dirac equation with an imaginary mass term. To construct such Hamiltonians and their solutions, we use the free-particle Dirac equation and then a matrix approach of supersymmetric quantum mechanics to generate a new Hamiltonian with a magnetic vector potential and an imaginary position-dependent mass term. Then, we use a gauge transformation that maps our solutions to the final system, photonic graphene under strain with a position-dependent gain/loss term. We give explicit expressions for the guided modes.

Downloads

Download data is not yet available.

References

K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field effect in atomically thin carbon films. Science 306(5696):666–669, 2004. https://doi.org/10.1126/science.1102896.

R. C. Andrew, R. E. Mapasha, A. M. Ukpong, N. Chetty. Mechanical properties of graphene and boronitrene. Physical Review B 85(12):125428, 2012. https://doi.org/10.1103/PhysRevB.85.125428.

S.-E. Zhu, S. Yuan, G. C. A. M. Janssen. Optical transmittance of multilayer graphene. EPL (Europhysics Letters) 108(1):17007, 2014. https://doi.org/10.1209/0295-5075/108/17007.

A. K. Geim, K. S. Novoselov. The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals, pp. 11–19. 2009. https://doi.org/10.1142/9789814287005_0002.

Ş. Kuru, J. Negro, L. M. Nieto. Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields. Journal of Physics: Condensed Matter 21(45):455305, 2009. https://doi.org/10.1088/0953-8984/21/45/455305.

B. Midya, D. J. Fernández C. Dirac electron in graphene under supersymmetry generated magnetic fields. Journal of Physics A: Mathematical and Theoretical 47(28):285302, 2014. https://doi.org/10.1088/1751-8113/47/28/285302.

A. Contreras-Astorga, A. Schulze-Halberg. The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials. Journal of Mathematical Physics 55(10):103506, 2014. https://doi.org/10.1063/1.4898184.

M. Castillo-Celeita, D. J. Fernández C. Dirac electron in graphene with magnetic fields arising from first-order intertwining operators. Journal of Physics A: Mathematical and Theoretical 53(3):035302, 2020. https://doi.org/10.1088/1751-8121/ab3f40.

A. Contreras-Astorga, F. Correa, V. Jakubský. Super-Klein tunneling of Dirac fermions through electrostatic gratings in graphene. Physical Review B 102(11):115429, 2020. https://doi.org/10.1103/PhysRevB.102.115429.

G. G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, H. Terrones. Electronic and optical properties of strained graphene and other strained 2D materials: a review. Reports on Progress in Physics 80(9):096501, 2017. https://doi.org/10.1088/1361-6633/aa74ef.

M. Oliva-Leyva, C. Wang. Theory for strained graphene beyond the Cauchy–Born rule. Physica Status Solidi (RRL)–Rapid Research Letters 12(9):1800237, 2018. https://doi.org/10.1002/pssr.201800237.

M. Polini, F. Guinea, M. Lewenstein, et al. Artificial honeycomb lattices for electrons, atoms and photons. Nature Nanotechnology 8(9):625–633, 2013. https://doi.org/10.1038/nnano.2013.161.

Y. Plotnik, M. C. Rechtsman, D. Song, et al. Observation of unconventional edge states in ‘photonic graphene’. Nature Materials 13(1):57–62, 2014. https://doi.org/10.1038/nmat3783.

H. Ramezani, T. Kottos, V. Kovanis, D. N. Christodoulides. Exceptional-point dynamics in photonic honeycomb lattices with PT symmetry. Physical Review A 85(1):013818, 2012. https://doi.org/10.1103/PhysRevA.85.013818.

G. G. Pyrialakos, N. S. Nye, N. V. Kantartzis, D. N. Christodoulides. Emergence of type-II Dirac points in graphynelike photonic lattices. Physical Review Letters 119(11):113901, 2017. https://doi.org/10.1103/PhysRevLett.119.113901.

S. Grosche, A. Szameit, M. Ornigotti. Spatial Goos-Hänchen shift in photonic graphene. Physical Review A 94(6):063831, 2016. https://doi.org/10.1103/PhysRevA.94.063831.

T. Ozawa, A. Amo, J. Bloch, I. Carusotto. Klein tunneling in driven-dissipative photonic graphene. Physical Review A 96(1):013813, 2017. https://doi.org/10.1103/PhysRevA.96.013813.

A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, M. Segev. PT -symmetry in honeycomb photonic lattices. Physical Review A 84(2):021806, 2011. https://doi.org/10.1103/PhysRevA.84.021806.

H. Schomerus, N. Y. Halpern. Parity anomaly and Landau-level lasing in strained photonic honeycomb lattices. Physical Review Letters 110(1):013903, 2013. https://doi.org/10.1103/PhysRevLett.110.013903.

M. C. Rechtsman, J. M. Zeuner, A. Tünnermann, et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nature Photonics 7(2):153–158, 2013. https://doi.org/10.1038/nphoton.2012.302.

D. A. Gradinar, M. Mucha-Kruczyński, H. Schomerus, V. I. Fal’ko. Transport signatures of pseudomagnetic Landau levels in strained graphene ribbons. Physical Review Letters 110(26):266801, 2013. https://doi.org/10.1103/PhysRevLett.110.266801.

C. Bena, G. Montambaux. Remarks on the tight-binding model of graphene. New Journal of Physics 11(9):095003, 2009. https://doi.org/10.1088/1367-2630/11/9/095003.

P. Dietl, F. Piéchon, G. Montambaux. New magnetic field dependence of Landau levels in a graphenelike structure. Physical Review Letters 100(23):236405, 2008. https://doi.org/10.1103/PhysRevLett.100.236405.

T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Physical Review B 79(20):205433, 2009. https://doi.org/10.1103/PhysRevB.79.205433.

F. Ding, H. Ji, Y. Chen, et al. Stretchable graphene: a close look at fundamental parameters through biaxial straining. Nano Letters 10(9):3453–3458, 2010. https://doi.org/10.1021/nl101533x.

A. Contreras-Astorga, V. Jakubsk`y, A. Raya. On the propagation of Dirac fermions in graphene with strain-induced inhomogeneous Fermi velocity. Journal of Physics: Condensed Matter 32(29):295301, 2020. https://doi.org/10.1088/1361-648X/ab7e5b.

D. J. Fernández C. SUSY quantum mechanics. International Journal of Modern Physics A 12(01):171–176, 1997. https://doi.org/10.1142/S0217751X97000232.

D. J. Fernández C., N. Fernández-García. Higher-order supersymmetric quantum mechanics. AIP Conference Proceedings 744(1):236–273, 2004. https://doi.org/10.1063/1.1853203.

L. M. Nieto, A. A. Pecheritsin, B. F. Samsonov. Intertwining technique for the one-dimensional stationary Dirac equation. Annals of Physics 305(2):151–189, 2003. https://doi.org/10.1016/S0003-4916(03)00071-X.

Downloads

Published

2022-02-28

How to Cite

Castillo-Celeita, M., Contreras-Astorga, A. ., & Fernández C., D. J. . (2022). Photonic graphene under strain with position-dependent gain and loss. Acta Polytechnica, 62(1), 23–29. https://doi.org/10.14311/AP.2022.62.0023

Issue

Section

Analytic and Algebraic Methods in Physics