Orthonormal polynomial projection quantization: an algebraic eigenenergy bounding method

Authors

  • Carlos R. Handy Texas Southern University, 3100 Cleburne St., Houston, Texas, U.S.A.

DOI:

https://doi.org/10.14311/AP.2022.62.0063

Keywords:

eigenvalue bounding methods, hermitian and non-hermitian linear operators

Abstract

The ability to generate tight eigenenergy bounds for low dimension bosonic or ferminonic, hermitian or non-hermitian, Schrödinger operator problems is an important objective in the computation of quantum systems. Very few methods can simultaneously generate lower and upper bounds. One of these is the Eigenvalue Moment Method (EMM) originally introduced by Handy and Besssis, exploiting the use of semidefinite programming/nonlinear-convex optimization (SDP) techniques as applied to the positivity properties of the multidimensional bosonic ground state for a large class of important physical systems (i.e. those admitting a moments’ representation). A recent breakthrough has been achieved through another, simpler, moment representation based quantization formalism, the Orthonormal Polynomial Projection Quantization Bounding Method (OPPQ-BM). It is purely algebraic and does not require any SDP analysis. We discuss its essential structure in the context of several one dimensional examples.

Downloads

Download data is not yet available.

References

W. Ritz. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. Journal für die reine und angewandte Mathematik 1909(135):1–61, 1909. https://doi.org/10.1515/crll.1909.135.1.

G. Temple. The theory of Rayleigh’s principle as applied to continuous systems. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character 119(782):276–293, 1928. http://www.jstor.org/stable/95047.

M. G. Marmorino, A. Almayouf, T. Krause, D. Le. Optimization of the temple lower bound. Journal of Mathematical Chemistry 50(4):833–842, 2012. https://doi.org/10.1007/s10910-011-9927-z.

R. Martinazzo, E. Pollak. Lower bounds to eigenvalues of the schrödinger equation by solution of a 90-y challenge. Proceedings of the National Academy of Sciences 117(28):16181–16186, 2020. https://doi.org/10.1073/pnas.2007093117.

C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters 80:5243–5246, 1998. https://doi.org/10.1103/PhysRevLett.80.5243.

P. Dorey, C. Dunning, R. Tateo. Supersymmetry and the spontaneous breakdown of PT symmetry. Journal of Physics A: Mathematical and General 34(28):L391–L400, 2001. https://doi.org/10.1088/0305-4470/34/28/102.

C. M. Bender. Making sense of non-Hermitian Hamiltonians. Reports on Progress in Physics 70(6):947–1018, 2007. https://doi.org/10.1088/0034-4885/70/6/r03.

C. R. Handy. Generating converging bounds to the (complex) discrete states of P2+iX3+iαX Hamiltonian. Journal of Physics A: Mathematical and General 34(24):5065–5081, 2001. https://doi.org/10.1088/0305-4470/34/24/305.

C. R. Handy. Exact Christoffel-Darboux expansions: A new, multidimensional, algebraic, eigenenergy bounding method. Physica Scripta 96(7):075201, 2021. https://doi.org/10.1088/1402-4896/abf67e.

C. R. Handy, D. Vrinceanu. Orthogonal polynomial projection quantization: a new Hill determinant method. Journal of Physics A: Mathematical and Theoretical 46(13):135202, 2013. https://doi.org/10.1088/1751-8113/46/13/135202.

C. R. Handy, D. Vrinceanu. Rapidly converging bound state eigenenergies for the two dimensional quantum dipole. Journal of Physics B: Atomic, Molecular and Optical Physics 46(11):115002, 2013. https://doi.org/10.1088/0953-4075/46/11/115002.

J. Le Guillou, J. Zinn-Justin. The hydrogen atom in strong magnetic fields: Summation of the weak field series expansion. Annals of Physics 147(1):57–84, 1983. https://doi.org/10.1016/0003-4916(83)90067-2.

J. A. Shohat, J. D. Tamarkin. The Problem of Moments. American Mathematical Society, Providence, RI, 1963.

C. R. Handy, D. Bessis. Rapidly convergent lower bounds for the Schrödinger-equation ground-state energy. Physical Review Letters 55:931–934, 1985. https://doi.org/10.1103/PhysRevLett.55.931.

C. R. Handy, D. Bessis, G. Sigismondi, T. D. Morley. Rapidly converging bounds for the ground-state energy of hydrogenic atoms in superstrong magnetic fields. Physical Review Letters 60:253–256, 1988. https://doi.org/10.1103/PhysRevLett.60.253.

Y. P. Kravchenko, M. A. Liberman, B. Johansson. Exact solution for a hydrogen atom in a magnetic field of arbitrary strength. Physical Review A 54:287–305, 1996. https://doi.org/10.1103/PhysRevA.54.287.

C. Schimeczek, G. Wunner. Accurate 2d finite element calculations for hydrogen in magnetic fields of arbitrary strength. Computer Physics Communications 185(2):614–621, 2014. https://doi.org/10.1016/j.cpc.2013.09.023.

A. Grossmann, J. Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis 15(4):723–736, 1984. https://doi.org/10.1137/0515056.

C. Handy, R. Murenzi. Moment-wavelet quantization: a first principles analysis of quantum mechanics through continuous wavelet transform theory. Physics Letters A 248(1):7–15, 1998. https://doi.org/10.1016/S0375-9601(98)00645-8.

C. R. Handy. Singular-perturbation–strong-coupling field theory and the moments problem. Physical Review D 24:378–383, 1981. https://doi.org/10.1103/PhysRevD.24.378.

S. Boyd, L. Vandenberghe. Convex optimization. Cambridge University Press, New York, 2004.

J. B. Lasserre. Moments, positive polynomials and their applications. Imperial College Press, London, 2010.

V. Chvátal. Linear programming. Freeman, New York, 1983.

M. Reed, B. Simon. Methods of modern mathematical physics. Vol. 1-3. Academic Press, New York, 1972. https://doi.org/10.1016/B978-0-12-585001-8.X5001-6.

C. R. Handy, D. Khan, X.-Q. Wang, C. J. Tymczak. Multiscale reference function analysis of the PT symmetry breaking solutions for P2+iX3+iαX Hamiltonian. Journal of Physics A: Mathematical and General 34(27):5593–5602, 2001. https://doi.org/10.1088/0305-4470/34/27/309.

E. Delabaere, D. T. Trinh. Spectral analysis of the complex cubic oscillator. Journal of Physics A: Mathematical and General 33(48):8771–8796, 2000. https://doi.org/10.1088/0305-4470/33/48/314.

C. R. Handy. Generating converging eigenenergy bounds for the discrete states of the ix3 non-Hermitian potential. Journal of Physics A: Mathematical and General 34(19):L271–L277, 2001. https://doi.org/10.1088/0305-4470/34/19/102.

Downloads

Published

2022-02-28

How to Cite

Handy, C. R. (2022). Orthonormal polynomial projection quantization: an algebraic eigenenergy bounding method. Acta Polytechnica, 62(1), 63–79. https://doi.org/10.14311/AP.2022.62.0063

Issue

Section

Analytic and Algebraic Methods in Physics