How to understand the structure of beta functions in six-derivative Quantum Gravity?

Authors

  • Lesław Rachwał Universidade Federal de Juiz de Fora, Departamento de Física–Instituto de Ciências Exatas, 33036-900, Juiz de Fora, MG, Brazil

DOI:

https://doi.org/10.14311/AP.2022.62.0118

Keywords:

Quantum Gravity, higher derivatives, beta functions, UV-finiteness, conformal symmetry

Abstract

We extensively motivate the studies of higher-derivative gravities, and in particular we emphasize which new quantum features theories with six derivatives in their definitions possess. Next, we discuss the mathematical structure of the exact on the full quantum level beta functions obtained previously for three couplings in front of generally covariant terms with four derivatives (Weyl tensor squared, Ricci scalar squared and the Gauss-Bonnet scalar) in minimal six-derivative quantum gravity in d = 4 spacetime dimensions. The fundamental role here is played by the ratio x of the coupling in front of the term with Weyl tensors to the coupling in front of the term with Ricci scalars in the original action. We draw a relation between the polynomial dependence on x and the absence/presence of enhanced conformal symmetry and renormalizability in the models where formally x → +∞ in the case of four- and six-derivative theories respectively.

Downloads

Download data is not yet available.

References

B. S. DeWitt. Quantum theory of gravity. 1. The canonical theory. Physical Review 160(5):1113–1148, 1967. https://doi.org/10.1103/PhysRev.160.1113.

B. S. DeWitt. Quantum theory of gravity. 2. The manifestly covariant theory. Physical Review 162(5):1195–1239, 1967. https://doi.org/10.1103/PhysRev.162.1195.

B. S. DeWitt. Quantum theory of gravity. 3. Applications of the covariant theory. Physical Review 162(5):1239–1256, 1967. https://doi.org/10.1103/PhysRev.162.1239.

R. Utiyama, B. S. DeWitt. Renormalization of a classical gravitational field interacting with quantized matter fields. Journal of Mathematical Physics 3(4):608–618, 1962. https://doi.org/10.1063/1.1724264.

N. D. Birrell, P. C. W. Davies. Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK, 1984. ISBN 978-0-521-27858-4, 978-0-521-27858-4, https://doi.org/10.1017/CBO9780511622632.

I. L. Buchbinder, S. D. Odintsov, I. L. Shapiro. Effective action in quantum gravity. 1992.

K. S. Stelle. Renormalization of higher derivative quantum gravity. Physical Review D 16(4):953–969, 1977. https://doi.org/10.1103/PhysRevD.16.953.

K. S. Stelle. Classical gravity with higher derivatives. General Relativity and Gravitation 9:353–371, 1978. https://doi.org/10.1007/BF00760427.

H. Lü, A. Perkins, C. N. Pope, K. S. Stelle. Spherically symmetric solutions in higher-derivative gravity. Physical Review D 92(12):124019, 2015. https://doi.org/10.1103/PhysRevD.92.124019.

H. Lu, A. Perkins, C. N. Pope, K. S. Stelle. Black holes in higher-derivative gravity. Physical Review Letters 114(17):171601, 2015. https://doi.org/10.1103/PhysRevLett.114.171601.

L. Modesto. Super-renormalizable quantum gravity. Physical Review D 86(4):044005, 2012. https://doi.org/10.1103/PhysRevD.86.044005.

M. Asorey, J. L. Lopez, I. L. Shapiro. Some remarks on high derivative quantum gravity. International Journal of Modern Physics A 12(32):5711–5734, 1997. https://doi.org/10.1142/S0217751X97002991.

P. D. Mannheim. Making the case for conformal gravity. Foundations of Physics 42:388–420, 2012. https://doi.org/10.1007/s10701-011-9608-6.

P. D. Mannheim. Conformal invariance and the metrication of the fundamental forces. International Journal of Modern Physics D 25(12):1644003, 2016. https://doi.org/10.1142/S021827181644003X.

G. ’t Hooft, M. J. G. Veltman. One loop divergencies in the theory of gravitation. Annales de l’ Inst H Poincare Physique Théorique A 20(1):69–94, 1974.

S. Deser, P. van Nieuwenhuizen. One loop divergences of quantized Einstein-Maxwell fields. Physical Review D 10(2):401–410, 1974. https://doi.org/10.1103/PhysRevD.10.401.

M. H. Goroff, A. Sagnotti. Quantum gravity at two loops. Physics Letters B 160(1-3):81–86, 1985. https://doi.org/10.1016/0370-2693(85)91470-4.

M. H. Goroff, A. Sagnotti. The ultraviolet behavior of Einstein gravity. Nuclear Physics B 266(3-4):709–736, 1986. https://doi.org/10.1016/0550-3213(86)90193-8.

G. ’t Hooft. Local conformal symmetry: the missing symmetry component for space and time, 2014. arXiv:1410.6675.

G. ’t Hooft. Local conformal symmetry: The missing symmetry component for space and time. International Journal of Modern Physics D 24(12):1543001, 2015. https://doi.org/10.1142/S0218271815430014.

G. ’t Hooft. Local conformal symmetry in black holes, standard model, and quantum gravity. International Journal of Modern Physics D 26(03):1730006, 2016. https://doi.org/10.1142/S0218271817300063.

J. Maldacena. Einstein gravity from conformal gravity, 2011. arXiv:1105.5632.

Y.-D. Li, L. Modesto, L. Rachwał. Exact solutions and spacetime singularities in nonlocal gravity. Journal of High Energy Physics 2015:1–50, 2015. https://doi.org/10.1007/JHEP12(2015)173.

I. L. Buchbinder, O. K. Kalashnikov, I. L. Shapiro, et al. The stability of asymptotic freedom in grand unified models coupled to R2 gravity. Physics Letters B 216(1-2):127–132, 1989. https://doi.org/10.1016/0370-2693(89)91381-6.

I. L. Buchbinder, I. Shapiro. Introduction to Quantum Field Theory with Applications to Quantum Gravity. Oxford Graduate Texts. Oxford University Press, 2021.

L. Rachwał, L. Modesto, A. Pinzul, I. L. Shapiro. Renormalization group in six-derivative quantum gravity. Physical Review D 104(8):085018, 2021. https://doi.org/10.1103/PhysRevD.104.085018.

A. O. Barvinsky, G. A. Vilkovisky. The generalized Schwinger-Dewitt technique in gauge theories and quantum gravity. Physics Reports 119(1):1–74, 1985. https://doi.org/10.1016/0370-1573(85)90148-6.

R. Mistry, A. Pinzul, L. Rachwał. Spectral action approach to higher derivative gravity. The European Physical Journal C 80(3):266, 2020. https://doi.org/10.1140/epjc/s10052-020-7805-1.

L. Modesto, L. Rachwal. Super-renormalizable and finite gravitational theories. Nuclear Physics B 889:228–248, 2014. https://doi.org/10.1016/j.nuclphysb.2014.10.015.

L. Modesto, M. Piva, L. Rachwal. Finite quantum gauge theories. Physical Review D 94(2):025021, 2016. https://doi.org/10.1103/PhysRevD.94.025021.

A. S. Koshelev, K. Sravan Kumar, L. Modesto, L. Rachwał. Finite quantum gravity in dS and AdS spacetimes. Physical Review D 98(4):046007, 2018. https://doi.org/10.1103/PhysRevD.98.046007.

L. Modesto, L. Rachwał. Nonlocal quantum gravity: A review. International Journal of Modern Physics D 26(11):1730020, 2017. https://doi.org/10.1142/S0218271817300208.

L. Modesto, L. Rachwał. Universally finite gravitational and gauge theories. Nuclear Physics B 900:147–169, 2015. https://doi.org/10.1016/j.nuclphysb.2015.09.006.

L. Modesto, L. Rachwal. Finite conformal quantum gravity and nonsingular spacetimes, 2016. arXiv:1605.04173.

L. Modesto, L. Rachwał. Finite quantum gravity in four and extra dimensions. In 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, vol. 2, pp. 1196–1203. 2017. https://doi.org/10.1142/9789813226609_0084.

R. E. Kallosh, O. V. Tarasov, I. V. Tyutin. One loop finiteness of quantum gravity off mass shell. Nuclear Physics B 137(1-2):145–163, 1978. https://doi.org/10.1016/0550-3213(78)90055-X.

M. Y. Kalmykov. Gauge and parametrization dependencies of the one loop counterterms in the Einstein gravity. Classical and Quantum Gravity 12(6):1401–1412, 1995. https://doi.org/10.1088/0264-9381/12/6/007.

I. L. Shapiro, A. G. Zheksenaev. Gauge dependence in higher derivative quantum gravity and the conformal anomaly problem. Physics Letters B 324(3-4):286–292, 1994. https://doi.org/10.1016/0370-2693(94)90195-3.

I. A. Batalin, G. A. Vilkovisky. Quantization of gauge theories with linearly dependent generators. Physical Review D 28(10):2567–2582, 1983. [Erratum: Phys.Rev.D 30, 508 (1984)], https://doi.org/10.1103/PhysRevD.28.2567.

I. A. Batalin, G. A. Vilkovisky. Gauge algebra and quantization. Physics Letters B 102(1):27–31, 1981. https://doi.org/10.1016/0370-2693(81)90205-7.

E. S. Fradkin, A. A. Tseytlin. Renormalizable asymptotically free quantum theory of gravity. Nuclear Physics B 201(3):469–491, 1982. https://doi.org/10.1016/0550-3213(82)90444-8.

I. G. Avramidi, A. O. Barvinsky. Asymptotic freedom in higher derivative quantum gravity. Physics Letters B 159(4-6):269–274, 1985. https://doi.org/10.1016/0370-2693(85)90248-5.

L. S. Brown, J. P. Cassidy. Stress tensor trace anomaly in a gravitational metric: General theory, Maxwell field. Physical Review D 15(10):2810–2829, 1977. https://doi.org/10.1103/PhysRevD.15.2810.

L. Modesto, L. Rachwał, I. L. Shapiro. Renormalization group in super-renormalizable quantum gravity. The European Physical Journal C 78(7):555, 2018. https://doi.org/10.1140/epjc/s10052-018-6035-2.

M. Asorey, F. Falceto. On the consistency of the regularization of gauge theories by high covariant derivatives. Physical Review D 54(8):5290–5301, 1996. https://doi.org/10.1103/PhysRevD.54.5290.

M. Asorey, F. Falceto, L. Rachwał. Asymptotic freedom and higher derivative gauge theories. Journal of High Energy Physics 2021:75, 2021. https://doi.org/10.1007/JHEP05(2021)075.

Wolfram Research, Mathematica, Version 9.0, Champaign, IL (2012). https://www.wolfram.com/.

A. O. Barvinsky, G. A. Vilkovisky. Covariant perturbation theory. 2: Second order in the curvature. General algorithms. Nuclear Physics B 333(2):471–511, 1990. https://doi.org/10.1016/0550-3213(90)90047-H.

E. S. Fradkin, A. A. Tseytlin. Conformal supergravity. Physics Reports 119(4-5):233–362, 1985. https://doi.org/10.1016/0370-1573(85)90138-3.

C. Bambi, L. Modesto, S. Porey, L. Rachwał. Black hole evaporation in conformal gravity. Journal of Cosmology and Astroparticle Physics 2017(9):033, 2017. https://doi.org/10.1088/1475-7516/2017/09/033.

C. Bambi, L. Modesto, S. Porey, L. Rachwał. Formation and evaporation of an electrically charged black hole in conformal gravity. The European Physical Journal C 78(2):116, 2018. https://doi.org/10.1140/epjc/s10052-018-5608-4.

P. Jizba, L. Rachwał, J. Kňap. Infrared behavior of Weyl gravity: Functional renormalization group approach. Physical Review D 101(4):044050, 2020. https://doi.org/10.1103/PhysRevD.101.044050.

P. Jizba, L. Rachwał, S. G. Giaccari, J. Kňap. Dark side of Weyl gravity. Universe 6(8):123, 2020. https://doi.org/10.3390/universe6080123.

L. Rachwał, S. Giaccari. Infrared behavior of Weyl Gravity. Journal of Physics: Conference Series 1956(1):012012, 2021. https://doi.org/10.1088/1742-6596/1956/1/012012.

C. Bambi, L. Modesto, L. Rachwał. Spacetime completeness of non-singular black holes in conformal gravity. Journal of Cosmology and Astroparticle Physics 2017(05):003, 2017. https://doi.org/10.1088/1475-7516/2017/05/003.

L. Rachwał. Conformal symmetry in field theory and in quantum gravity. Universe 4(11):125, 2018. https://doi.org/10.3390/universe4110125.

P. D. Mannheim. Mass generation, the cosmological constant problem, conformal symmetry, and the Higgs boson. Progress in Particle and Nuclear Physics 94:125–183, 2017. https://doi.org/10.1016/j.ppnp.2017.02.001.

P. D. Mannheim. PT symmetry, conformal symmetry, and the metrication of electromagnetism. Foundations of Physics 47(9):1229–1257, 2017. https://doi.org/10.1007/s10701-016-0017-8.

D. Anselmi, M. Piva. Perturbative unitarity of Lee-Wick quantum field theory. Physical Review D 96(4):045009, 2017. https://doi.org/10.1103/PhysRevD.96.045009.

D. Anselmi, M. Piva. A new formulation of Lee-Wick quantum field theory. Journal of High Energy Physics 2017:66, 2017. https://doi.org/10.1007/JHEP06(2017)066.

D. Anselmi. Fakeons and Lee-Wick models. Journal of High Energy Physics 2018:141, 2018. https://doi.org/10.1007/JHEP02(2018)141.

R. E. Cutkosky, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne. A non-analytic S-matrix. Nuclear Physics B 12(2):281–300, 1969. https://doi.org/10.1016/0550-3213(69)90169-2.

T. D. Lee, G. C. Wick. Negative metric and the unitarity of the S-matrix. Nuclear Physics B 9(2):209–243, 1969. https://doi.org/10.1016/0550-3213(69)90098-4.

T. D. Lee, G. C. Wick. Finite theory of quantum electrodynamics. Physical Review D 2(6):1033–1048, 1970. https://doi.org/10.1103/PhysRevD.2.1033.

D. Anselmi. Fakeons, microcausality and the classical limit of quantum gravity. Classical and Quantum Gravity 36(6):065010, 2019. https://doi.org/10.1088/1361-6382/ab04c8.

D. Anselmi, M. Piva. Quantum gravity, fakeons and microcausality. Journal of High Energy Physics 11:21, 2018. https://doi.org/10.1007/JHEP11(2018)021.

L. Modesto, I. L. Shapiro. Superrenormalizable quantum gravity with complex ghosts. Physics Letters B 755:279–284, 2016. https://doi.org/10.1016/j.physletb.2016.02.021.

L. Modesto. Super-renormalizable or finite Lee–Wick quantum gravity. Nuclear Physics B 909:584–606, 2016. https://doi.org/10.1016/j.nuclphysb.2016.06.004.

C. M. Bender, P. D. Mannheim. No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model. Physical Review Letters 100(11):110402, 2008. https://doi.org/10.1103/PhysRevLett.100.110402.

C. M. Bender, P. D. Mannheim. Exactly solvable PT -symmetric Hamiltonian having no Hermitian counterpart. Physical Review D 78(2):025022, 2008. https://doi.org/10.1103/PhysRevD.78.025022.

A. V. Smilga. Benign versus malicious ghosts in higher-derivative theories. Nuclear Physics B 706(3):598–614, 2005. https://doi.org/10.1016/j.nuclphysb.2004.10.037.

A. V. Smilga. Supersymmetric field theory with benign ghosts. Journal of Physics A: Mathematical and Theoretical 47(5):052001, 2014. https://doi.org/10.1088/1751-8113/47/5/052001.

D. Anselmi, A. Marino. Fakeons and microcausality: light cones, gravitational waves and the Hubble constant. Classical and Quantum Gravity 37(9):095003, 2020. https://doi.org/10.1088/1361-6382/ab78d2.

V. I. Tkach. Towards ghost-free gravity and standard model. Modern Physics Letters A 27(22):1250131, 2012. https://doi.org/10.1142/S0217732312501313.

M. Kaku. Strong coupling approach to the quantization of conformal gravity. Physical Review D 27(12):2819–2834, 1983. https://doi.org/10.1103/PhysRevD.27.2819.

E. Tomboulis. 1N expansion and renormalization in quantum gravity. Physics Letters B 70(3):361–364, 1977. https://doi.org/10.1016/0370-2693(77)90678-5.

E. Tomboulis. Renormalizability and asymptotic freedom in quantum gravity. Physics Letters B 97(1):77–80, 1980. https://doi.org/10.1016/0370-2693(80)90550-X.

E. T. Tomboulis. Unitarity in higher derivative quantum gravity. Physical Review Letters 52(14):1173–1176, 1984. https://doi.org/10.1103/PhysRevLett.52.1173.

F. d. O. Salles, I. L. Shapiro. Do we have unitary and (super)renormalizable quantum gravity below the Planck scale? Physical Review D 89(8):084054, 2014. [Erratum: Phys.Rev.D 90, 129903 (2014)], https://doi.org/10.1103/PhysRevD.89.084054.

P. Peter, F. de O. Salles, I. L. Shapiro. On the ghost-induced instability on de Sitter background. Physical Review D 97(6):064044, 2018. https://doi.org/10.1103/PhysRevD.97.064044.

F. de O. Salles, I. L. Shapiro. Recent progress in fighting ghosts in quantum gravity. Universe 4(9):91, 2018. https://doi.org/10.3390/universe4090091.

M. Christodoulou, L. Modesto. Note on reflection positivity in nonlocal gravity. JETP Letters 109(5):286–291, 2019. https://doi.org/10.1134/S0021364019050011.

F. Briscese, L. Modesto. Cutkosky rules and perturbative unitarity in Euclidean nonlocal quantum field theories. Physical Review D 99(10):104043, 2019. https://doi.org/10.1103/PhysRevD.99.104043.

J. F. Donoghue, G. Menezes. Unitarity, stability and loops of unstable ghosts. Physical Review D 100(10):105006, 2019. https://doi.org/10.1103/PhysRevD.100.105006.

M. Asorey, L. Rachwal, I. L. Shapiro. Unitarity issues in some higher derivative field theories. Galaxies 6(1):23, 2018. https://doi.org/10.3390/galaxies6010023.

F. Briscese, L. Modesto. Nonlinear stability of Minkowski spacetime in nonlocal gravity. Journal of Cosmology and Astroparticle Physics 2019(07):009, 2019. https://doi.org/10.1088/1475-7516/2019/07/009.

F. Briscese, G. Calcagni, L. Modesto. Nonlinear stability in nonlocal gravity. Physical Review D 99(8):084041, 2019. https://doi.org/10.1103/PhysRevD.99.084041.

Downloads

Published

2022-02-28

How to Cite

Rachwał, L. (2022). How to understand the structure of beta functions in six-derivative Quantum Gravity?. Acta Polytechnica, 62(1), 118–156. https://doi.org/10.14311/AP.2022.62.0118

Issue

Section

Analytic and Algebraic Methods in Physics