Time-dependent mass oscillators: constants of motion and semiclasical states

Authors

  • Kevin Zelaya Czech Academy of Science, Nuclear Physics Institute, 250 68 Řež, Czech Republic

DOI:

https://doi.org/10.14311/AP.2022.62.0211

Keywords:

Time-dependent mass oscillators, Caldirola-Kanai oscillator, quantum invariants, coherent states, semiclassical dynamics

Abstract

This work reports the construction of constants of motion for a family of time-dependent mass oscillators, achieved by implementing the formalism of form-preserving point transformations. The latter allows obtaining a spectral problem for each constant of motion, one of which leads to a non-orthogonal set of eigensolutions that are, in turn, coherent states. That is, eigensolutions whose wavepacket follows a classical trajectory and saturate, in this case, the Schrödinger-Robertson uncertainty relationship. Results obtained in this form are relatively general, and some particular examples are considered to illustrate the results further. Notably, a regularized Caldirola-Kanai mass term is introduced in an attempt to amend some of the unusual features found in the conventional
Caldirola-Kanai case.

Downloads

Download data is not yet available.

References

F. Cooper, A. Khare, U. Sukhatme. Supersymmetry in Quantum Mechanics. World Scientific, Singapore, 2001.

F. Schwabl. Quantum Mechanics. Springer-Verlag, Berlin, 3rd edn., 2002.

A. Bohm, A. Mostafazadeh, H. Koizumi, et al. The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics. Springer-Verlag, Berlin, 2003.

W. Paul. Electromagnetic traps for charged and neutral particles. Reviews of Modern Physics 62(3):531–540, 1990. https://doi.org/10.1103/RevModPhys.62.531.

M. Combescure. A quantum particle in a quadrupole radio-frequency trap. Annales de l’IHP Physique théorique 44(3):293–314, 1986. http://www.numdam.org/item/AIHPA_1986__44_3_293_0/.

D. E. Pritchard. Cooling neutral atoms in a magnetic trap for precision spectroscopy. Physical Review Letters 51:1336–1339, 1983. https://doi.org/10.1103/PhysRevLett.51.1336.

R. J. Glauber. Quantum Theory of Optical Coherence, chap. The Quantum Mechanics of Trapped Wavepackets, pp. 577–594. John Wiley & Sons, Ltd, 2006. https://doi.org/10.1002/9783527610075.ch15.

B. M. Mihalcea, S. Lynch. Investigations on dynamical stability in 3D Quadrupole Ion Traps. Applied Sciences 11(7):2938, 2021. https://doi.org/10.3390/app11072938.

H. R. Lewis, W. B. Riesenfled. An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. Journal of Mathematical Physics 10(8):1458–1473, 1969. https://doi.org/10.1063/1.1664991.

V. V. Dodonov, V. I. Man’ko. Coherent states and the resonance of a quantum damped oscillator. Physical Review A 20:550–560, 1979. https://doi.org/10.1103/PhysRevA.20.550.

V. V. Dodonov, O. V. Man’ko, V. I. Man’ko. Quantum nonstationary oscillator: Models and applications. Journal of Russian Laser Research 16(1):1–56, 1995. https://doi.org/10.1007/BF02581075.

I. Ramos-Prieto, A. R. Urzúa, M. Fernández-Guasti, H. M. Moya-Cessa. Ermakov-Lewis invariant for two coupled oscillators. Journal of Physics: Conference Series 1540(1):012009, 2020. https://doi.org/10.1088/1742-6596/1540/1/012009.

V. V. Dodonov. Invariant quantum states of quadratic Hamiltonians. Entropy 23(5):634, 2021. https://doi.org/10.3390/e23050634.

V. V. Dodonov, M. B. Horovits. Energy and magnetic moment of a quantum charged particle in time-dependent magnetic and electric fields of circular and plane solenoids. Entropy 23(12):1579, 2021. https://doi.org/10.3390/e23121579.

K. Zelaya, V. Hussin. Time-dependent rational extensions of the parametric oscillator: quantum invariants and the factorization method. Journal of Physics A: Mathematical and Theoretical 53(16):165301, 2020. https://doi.org/10.1088/1751-8121/ab78d1.

K. Zelaya. Nonstationary deformed singular oscillator: Quantum invariants and the factorization method. Journal of Physics: Conference Series 1540:012017, 2020. https://doi.org/10.1088/1742-6596/1540/1/012017.

K. Zelaya, I. Marquette, V. Hussin. Fourth Painlevé and Ermakov equations: quantum invariants and new exactly-solvable time-dependent Hamiltonians. Journal of Physics A: Mathematical and Theoretical 54(1):015206, 2020. https://doi.org/10.1088/1751-8121/abcab8.

V. G. Bagrov, B. F. Samsonov, L. A. Shekoyan. Darboux transformation for the nonsteady Schrödinger equation. Russian Physics Journal 38(7):706–712, 1995. https://doi.org/10.1007/BF00560273.

K. Zelaya, O. Rosas-Ortiz. Exactly solvable time-dependent oscillator-like potentials generated by Darboux transformations. Journal of Physics: Conference Series 839:012018, 2017. https://doi.org/10.1088/1742-6596/839/1/012018.

A. Contreras-Astorga. A time-dependent anharmonic oscillator. Journal of Physics: Conference Series 839:012019, 2017. https://doi.org/10.1088/1742-6596/839/1/012019.

R. Razo, S. Cruz y Cruz. New confining optical media generated by Darboux transformations. Journal of Physics: Conference Series 1194:012091, 2019. https://doi.org/10.1088/1742-6596/1194/1/012091.

J. Cen, A. Fring, T. Frith. Time-dependent Darboux (supersymmetric) transformations for non-Hermitian quantum systems. Journal of Physics A: Mathematical and Theoretical 52(11):115302, 2019. https://doi.org/10.1088/1751-8121/ab0335.

A. Contreras-Astorga, V. Jakubský. Photonic systems with two-dimensional landscapes of complex refractive index via time-dependent supersymmetry. Physical Review A 99:053812, 2019. https://doi.org/10.1103/PhysRevA.99.053812.

A. Contreras-Astorga, V. Jakubský. Multimode two-dimensional PT-symmetric waveguides. Journal of Physics: Conference Series 1540:012018, 2020. https://doi.org/10.1088/1742-6596/1540/1/012018.

W.-H. Steeb. Invertible Point Transformations and Nonlinear Differential Equations. World Scientific Publishing, Singapore, 1993. https://doi.org/10.1142/1987.

K. Zelaya, O. Rosas-Ortiz. Quantum nonstationary oscillators: Invariants, dynamical algebras and coherent states via point transformations. Physica Scripta 95(6):064004, 2020. https://doi.org/10.1088/1402-4896/ab5cbf.

K. Zelaya, V. Hussin. Point transformations: Exact solutions of the quantum time-dependent mass nonstationary oscillator. In M. B. Paranjape, R. MacKenzie, Z. Thomova, et al. (eds.), Quantum Theory and Symmetries, pp. 295–303. Springer International Publishing, Cham, 2021. https://doi.org/10.1007/978-3-030-55777-5_28.

A. Fring, R. Tenney. Exactly solvable time-dependent non-Hermitian quantum systems from point transformations. Physics Letters A 410:127548, 2021. https://doi.org/10.1016/j.physleta.2021.127548.

K. Zelaya, O. Rosas-Ortiz. Exact solutions for time-dependent non-Hermitian oscillators: Classical and quantum pictures. Quantum Reports 3(3):458–472, 2021. https://doi.org/10.3390/quantum3030030.

V. Aldaya, F. Cossío, J. Guerrero, F. F. López-Ruiz. The quantum Arnold transformation. Journal of Physics A: Mathematical and Theoretical 44(6):065302, 2011. https://doi.org/10.1088/1751-8113/44/6/065302.

N. Ünal. Quasi-coherent states for the Hermite oscillator. Journal of Mathematical Physics 59(6):062104, 2018. https://doi.org/10.1063/1.5016897.

I. Ramos-Prieto, M. Fernández-Guasti, H. M. Moya-Cessa. Quantum harmonic oscillator with time-dependent mass. Modern Physics Letters B 32(20):1850235, 2018. https://doi.org/10.1142/S0217984918502354.

F. Olver, D. Lozier, R. Boisvert, C. Clark. NIST Handbook of Mathematical Functions. Cambridge University Press, New York, 2010. ISBN 0521140633.

V. P. Ermakov. Second-order differential equations: conditions of complete integrability. Universita Izvestia Kiev Series III 20(9):1–25, 1880.

A. O. Harin. “Second-order differential equations: conditions of complete integrability” (English translation). Applicable Analysis and Discrete Mathematics 2:123–145, 2008.

D. Schuch. Quantum Theory from a Nonlinear Perspective: Riccati Equations in Fundamental Physics. Spinger, Cham, 2018.

A. O. Barut, L. Girardello. New “Coherent” States associated with non-compact groups. Communications in Mathematical Physics 21(1):41–55, 1971. https://doi.org/10.1007/BF01646483.

R. J. Glauber. Coherent and incoherent states of the radiation field. Physical Review 131:2766–2788, 1963. https://doi.org/10.1103/PhysRev.131.2766.

A. Perelomov. Generalized coherent states and their applications. Springer-Verlag, Berlin, 1986.

H. P. Robertson. The uncertainty principle. Physical Review 34:163–164, 1929. https://doi.org/10.1103/PhysRev.34.163.

E. Schrödinger. Zum Heisenbergschen Unscharfeprinzip. Proceedings of The Prussian Academy of Sciences 19:296–303, 1929.

P. Caldirola. Forze non conservative nella meccanica quantistica. Il Nuovo Cimento 18:393–400, 1941. https://doi.org/10.1007/BF02960144.

E. Kanai. On the quantization of the dissipative systems. Progress of Theoretical Physics 3(4):440–442, 1948. https://doi.org/10.1143/ptp/3.4.440.

M. Dernek, N. Ünal. Quasi-coherent states for damped and forced harmonic oscillator. Journal of Mathematical Physics 54(9):092102, 2013. https://doi.org/10.1063/1.4819261.

Downloads

Published

2022-02-28

How to Cite

Zelaya, K. (2022). Time-dependent mass oscillators: constants of motion and semiclasical states. Acta Polytechnica, 62(1), 211–221. https://doi.org/10.14311/AP.2022.62.0211

Issue

Section

Analytic and Algebraic Methods in Physics