Quantum description of angles in the plane
DOI:
https://doi.org/10.14311/AP.2022.62.0008Keywords:
integral quantization, real Hilbert spaces, quantum entanglementAbstract
The real plane with its set of orientations or angles in [0, π) is the simplest non trivial example of a (projective) Hilbert space and provides nice illustrations of quantum formalism. We present some of them, namely covariant integral quantization, linear polarisation of light as a quantum measurement, interpretation of entanglement leading to the violation of Bell inequalities, and spin one-half coherent states viewed as two entangled angles.
Downloads
References
E. C. G. Stueckelberg. Quantum theory in real Hilbert space. Helvetica Physica Acta 33(8):727–752, 1960.
M. P. Solèr. Characterization of Hilbert spaces by orthomodular spaces. Communications in Algebra 23(1):219–243, 1995. https://doi.org/10.1080/00927879508825218.
V. Moretti, M. Oppio. Quantum theory in quaternionic Hilbert space: How Poincaré symmetry reduces the theory to the standard complex one. Reviews in Mathematical Physics 31(04):1950013, 2019. https://doi.org/10.1142/S0129055X19500132.
A. Peres. Neumark’s theorem and quantum inseparability. Foundations of Physics 20:1441–1453, 1990. https://doi.org/10.1007/BF01883517.
H. Bergeron, E. M. F. Curado, J.-P. Gazeau, L. M. C. S. Rodrigues. Orientations in the plane as quantum states. Brazilian Journal of Physics 49(3):391–401, 2019. https://doi.org/10.1007s13538-019-00652-x.
R. Beneduci, E. Frion, J.-P. Gazeau, A. Perri. Real POVMS on the plane: integral quantization, Naimark theorem and linear polarization of the light. Quantum Physics 2021. arXiv:2108.04086.
R. Beneduci. Joint measurability through Naimark’s dilation theorem. Reports on Mathematical Physics 79(2):197–214, 2017. https://doi.org/10.1016/S0034-4877(17)30035-6.
A. Holevo. Probabilistic and statistical aspects of quantum theory. Springer Science & Business Media, 2011. https://doi.org/10.1007/978-88-7642-378-9.
H. Bergeron, J.-P. Gazeau. Integral quantizations with two basic examples. Annals of Physics 344:43–68, 2014. https://doi.org/10.1016/j.aop.2014.02.008.
W. H. McMaster. Polarization and the Stokes parameters. American Journal of Physics 22(6):351– 362, 1954. https://doi.org/10.1119/1.1933744.
B. Schaefer, E. Collett, R. Smyth, et al. Measuring the Stokes polarization parameters. American Journal of Physics 75(2):163–168, 2007. https://doi.org/10.1119/1.2386162.
L. D. Landau, E. M. Lifshitz. The Classical Theory of Fields. Vol. 2. (4th ed.). Butterworth-Heinemann, 1975. ISBN 978-0-7506-2768-9.
J. S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics 1(3):195–200, 1964. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195.
D. Bohm. A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Physical Review 85(2):166–179, 1952. https://doi.org/10.1103/PhysRev.85.166.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Roberto Beneduci, Emmanuel Frion, Jean-Pierre Gazeau
This work is licensed under a Creative Commons Attribution 4.0 International License.