Quantum description of angles in the plane

Authors

  • Roberto Beneduci Università della Calabria and Istituto Nazionale di Fisica Nucleare, Gruppo c. Cosenza, 87036 Arcavacata di Rende (Cs), Italy https://orcid.org/0000-0002-5838-1200
  • Emmanuel Frion University of Helsinki, Helsinki Institute of Physics, P. O. Box 64, FIN-00014 Helsinki, Finland https://orcid.org/0000-0003-1280-0315
  • Jean-Pierre Gazeau Université de Paris, CNRS, Astroparticule et Cosmologie, 75013 Paris, France

DOI:

https://doi.org/10.14311/AP.2022.62.0008

Keywords:

integral quantization, real Hilbert spaces, quantum entanglement

Abstract

The real plane with its set of orientations or angles in [0, π) is the simplest non trivial example of a (projective) Hilbert space and provides nice illustrations of quantum formalism. We present some of them, namely covariant integral quantization, linear polarisation of light as a quantum measurement, interpretation of entanglement leading to the violation of Bell inequalities, and spin one-half coherent states viewed as two entangled angles.

Downloads

Download data is not yet available.

References

E. C. G. Stueckelberg. Quantum theory in real Hilbert space. Helvetica Physica Acta 33(8):727–752, 1960.

M. P. Solèr. Characterization of Hilbert spaces by orthomodular spaces. Communications in Algebra 23(1):219–243, 1995. https://doi.org/10.1080/00927879508825218.

V. Moretti, M. Oppio. Quantum theory in quaternionic Hilbert space: How Poincaré symmetry reduces the theory to the standard complex one. Reviews in Mathematical Physics 31(04):1950013, 2019. https://doi.org/10.1142/S0129055X19500132.

A. Peres. Neumark’s theorem and quantum inseparability. Foundations of Physics 20:1441–1453, 1990. https://doi.org/10.1007/BF01883517.

H. Bergeron, E. M. F. Curado, J.-P. Gazeau, L. M. C. S. Rodrigues. Orientations in the plane as quantum states. Brazilian Journal of Physics 49(3):391–401, 2019. https://doi.org/10.1007s13538-019-00652-x.

R. Beneduci, E. Frion, J.-P. Gazeau, A. Perri. Real POVMS on the plane: integral quantization, Naimark theorem and linear polarization of the light. Quantum Physics 2021. arXiv:2108.04086.

R. Beneduci. Joint measurability through Naimark’s dilation theorem. Reports on Mathematical Physics 79(2):197–214, 2017. https://doi.org/10.1016/S0034-4877(17)30035-6.

A. Holevo. Probabilistic and statistical aspects of quantum theory. Springer Science & Business Media, 2011. https://doi.org/10.1007/978-88-7642-378-9.

H. Bergeron, J.-P. Gazeau. Integral quantizations with two basic examples. Annals of Physics 344:43–68, 2014. https://doi.org/10.1016/j.aop.2014.02.008.

W. H. McMaster. Polarization and the Stokes parameters. American Journal of Physics 22(6):351– 362, 1954. https://doi.org/10.1119/1.1933744.

B. Schaefer, E. Collett, R. Smyth, et al. Measuring the Stokes polarization parameters. American Journal of Physics 75(2):163–168, 2007. https://doi.org/10.1119/1.2386162.

L. D. Landau, E. M. Lifshitz. The Classical Theory of Fields. Vol. 2. (4th ed.). Butterworth-Heinemann, 1975. ISBN 978-0-7506-2768-9.

J. S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics 1(3):195–200, 1964. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195.

D. Bohm. A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Physical Review 85(2):166–179, 1952. https://doi.org/10.1103/PhysRev.85.166.

Downloads

Published

2022-02-28

Issue

Section

Analytic and Algebraic Methods in Physics

How to Cite

Beneduci, R., Frion, E., & Gazeau, J.-P. (2022). Quantum description of angles in the plane. Acta Polytechnica, 62(1), 8-15. https://doi.org/10.14311/AP.2022.62.0008