Conserved quantities in non-hermitian systems via vectorization method


  • Kaustubh S. Agarwal Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202 U.S.A.
  • Jacob Muldoon Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202 U.S.A.
  • Yogesh N. Joglekar Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202 U.S.A.



parity-time symmetry, pseudo-Hermiticity, conserved quantities


Open classical and quantum systems have attracted great interest in the past two decades. These include systems described by non-Hermitian Hamiltonians with parity-time (PT) symmetry that are best understood as systems with balanced, separated gain and loss. Here, we present an alternative way to characterize and derive conserved quantities, or intertwining operators, in such open systems. As a consequence, we also obtain non-Hermitian or Hermitian operators whose expectations values show single exponential time dependence. By using a simple example of a PT-symmetric dimer that arises in two distinct physical realizations, we demonstrate our procedure for static Hamiltonians and generalize it to time-periodic (Floquet) cases where intertwining operators are stroboscopically conserved. Inspired by the Lindblad density matrix equation, our approach provides a useful addition
to the well-established methods for characterizing time-invariants in non-Hermitian systems.


Download data is not yet available.


C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters 80(24):5243–5246, 1998.

G. Lévai, M. Znojil. Systematic search for PT -symmetric potentials with real energy spectra. Journal of Physics A: Mathematical and General 33(40):7165–7180, 2000.

C. M. Bender, D. C. Brody, H. F. Jones. Must a Hamiltonian be Hermitian? American Journal of Physics 71(11):1095–1102, 2003.

C. M. Bender. Making sense of non-Hermitian Hamiltonians. Reports on Progress in Physics 70(6):947–1018, 2007.

C. M. Bender, D. C. Brody, H. F. Jones. Complex extension of quantum mechanics. Physical Review Letters 89(27):270401, 2002.

A. Mostafazadeh. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. Journal of Mathematical Physics 43(1):205–214, 2002.

A. Mostafazadeh. Exact PT -symmetry is equivalent to Hermiticity. Journal of Physics A: Mathematical and General 36(25):7081–7091, 2003.

A. Mostafazadeh. Pseudo-Hermitian representation of quantum mechanics. International Journal of Geometric Methods in Modern Physics 07(07):1191–1306, 2010.

M. Znojil, H. B. Geyer. Construction of a unique metric in quasi-Hermitian quantum mechanics: Nonexistence of the charge operator in a 2 × 2 matrix model. Physics Letters B 640(1-2):52–56, 2006.

M. Znojil. Complete set of inner products for a discrete PT -symmetric square-well Hamiltonian. Journal of Mathematical Physics 50(12):122105, 2009.

M. Znojil. Special issue “Pseudo-Hermitian Hamiltonians in quantum physics in 2014”. International Journal of Theoretical Physics 54(11):3867–3870, 2015.

A. Ruschhaupt, F. Delgado, J. G. Muga. Physical realization of PT -symmetric potential scattering in a planar slab waveguide. Journal of Physics A: Mathematical and General 38(9):L171–L176, 2005.

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani. Theory of coupled optical PTsymmetric structures. Optics Letters 32(17):2632–2634, 2007.

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, Z. H. Musslimani. Beam dynamics in PT symmetric optical lattices. Physical Review Letters 100:103904, 2008.

S. Klaiman, U. Günther, N. Moiseyev. Visualization of branch points in PT -symmetric waveguides. Physical Review Letters 101:080402, 2008.

Y. N. Joglekar, C. Thompson, D. D. Scott, G. Vemuri. Optical waveguide arrays: quantum effects and PT symmetry breaking. The European Physical Journal Applied Physics 63(3):30001, 2013.

T. Kato. Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg, 1995.

C. E. Rüter, K. G. Makris, R. El-Ganainy, et al. Observation of parity-time symmetry in optics. Nature Physics 6(3):192–195, 2010.

A. Regensburger, C. Bersch, M.-A. Miri, et al. Parity–time synthetic photonic lattices. Nature 488(7410):167–171, 2012.

H. Hodaei, M.-A. Miri, M. Heinrich, et al. Parity-time–symmetric microring lasers. Science 346(6212):975–978, 2014.

B. Peng, Ş. K. Özdemir, F. Lei, et al. Parity–time-symmetric whispering-gallery microcavities. Nature Physics 10(5):394–398, 2014.

L. Chang, X. Jiang, S. Hua, et al. Parity–time symmetry and variable optical isolation in active–passivecoupled microresonators. Nature Photonics 8(7):524–529, 2014.

J. Schindler, A. Li, M. C. Zheng, et al. Experimental study of active LRC circuits with PT symmetries. Physical Review A 84(4):040101, 2011.

T. Wang, J. Fang, Z. Xie, et al. Observation of two PT transitions in an electric circuit with balanced gain and loss. The European Physical Journal D 74(8), 2020.

M. A. Quiroz-Juárez, K. S. Agarwal, Z. A. Cochran, et al. On-demand Parity-Time symmetry in a lone oscillator through complex, synthetic gauge fields, 2021. arXiv:2109.03846.

C. M. Bender, B. K. Berntson, D. Parker, E. Samuel. Observation of PT phase transition in a simple mechanical system. American Journal of Physics 81(3):173–179, 2013.

D. Duchesne, V. Aimez, R. Morandotti, et al. Observation of PT -symmetry breaking in complex optical potentials. Physical Review Letters 103(9):093902, 2009.

R. de J. León-Montiel, M. A. Quiroz-Juárez, J. L. Domínguez-Juárez, et al. Observation of slowly decaying eigenmodes without exceptional points in Floquet dissipative synthetic circuits. Communications Physics 1(1), 2018.

Y. N. Joglekar, A. K. Harter. Passive parity-time-symmetry-breaking transitions without exceptional points in dissipative photonic systems [Invited]. Photonics Research 6(8):A51–A57, 2018.

Y. Wu, W. Liu, J. Geng, et al. Observation of parity-time symmetry breaking in a single-spin system. Science 364(6443):878–880, 2019.

M. Naghiloo, M. Abbasi, Y. N. Joglekar, K. W. Murch. Quantum state tomography across the exceptional point in a single dissipative qubit. Nature Physics 15(12):1232–1236, 2019.

J. Li, A. K. Harter, J. Liu, et al. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nature Communications 10(1):855, 2019.

F. Klauck, L. Teuber, M. Ornigotti, et al. Observation of PT -symmetric quantum interference. Nature Photonics 13(12):883–887, 2019.

F. Ruzicka, K. S. Agarwal, Y. N. Joglekar. Conserved quantities, exceptional points, and antilinear symmetries in non-Hermitian systems. Journal of Physics: Conference Series 2038(1):012021, 2021.

Z. Bian, L. Xiao, K. Wang, et al. Conserved quantities in parity-time symmetric systems. Physical Review Research 2(2), 2020.

M. V. Berry. Optical lattices with PT symmetry are not transparent. Journal of Physics A: Mathematical and Theoretical 41(24):244007, 2008.

M. H. Teimourpour, R. El-Ganainy, A. Eisfeld, et al. Light transport in PT -invariant photonic structures with hidden symmetries. Physical Review A 90:053817, 2014.

V. Gorini, A. Kossakowski, E. C. G. Sudarshan. Completely positive dynamical semigroups of N-level systems. Journal of Mathematical Physics 17(5):821–825, 1976.

G. Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics 48(2):119–130, 1976.

M. Ban. Lie-algebra methods in quantum optics: The Liouville-space formulation. Physical Review A 47(6):5093–5119, 1993.

V. V. Albert, L. Jiang. Symmetries and conserved quantities in Lindblad master equations. Physical Review A 89:022118, 2014.

D. Manzano. A short introduction to the Lindblad master equation. AIP Advances 10(2):025106, 2020.

J. Gunderson, J. Muldoon, K. W. Murch, Y. N. Joglekar. Floquet exceptional contours in Lindblad dynamics with time-periodic drive and dissipation. Physical Review A 103:023718, 2021.

Y. N. Joglekar, R. Marathe, P. Durganandini, R. K. Pathak. PT spectroscopy of the Rabi problem. Physical Review A 90(4):040101, 2014.

T. E. Lee, Y. N. Joglekar. PT -symmetric Rabi model: Perturbation theory. Physical Review A 92:042103, 2015.

P. Hänggi. Driven quantum systems, 1998. [2020-10-31],

A. K. Harter, Y. N. Joglekar. Connecting active and passive PT -symmetric Floquet modulation models. Progress of Theoretical and Experimental Physics 2020(12):12A106, 2020.

P. Peng, W. Cao, C. Shen, et al. Anti-parity–time symmetry with flying atoms. Nature Physics 12(12):1139–1145, 2016.

Y. Choi, C. Hahn, J. W. Yoon, S. H. Song. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Nature Communications 9(1), 2018.

F. Zhang, Y. Feng, X. Chen, et al. Synthetic anti-PT symmetry in a single microcavity. Physical Review Letters 124:053901, 2020.

S. Longhi, E. Pinotti. Anyonic PT symmetry, drifting potentials and non-Hermitian delocalization. EPL (Europhysics Letters) 125(1):10006, 2019.

G. Arwas, S. Gadasi, I. Gershenzon, et al. Anyonic Parity-Time symmetric laser, 2021. arXiv:2103.15359.




How to Cite

Agarwal, K. S., Muldoon, J. ., & Joglekar, Y. N. (2022). Conserved quantities in non-hermitian systems via vectorization method. Acta Polytechnica, 62(1), 1–7.



Analytic and Algebraic Methods in Physics