Experimental and simulation study of CO2 breakthrough curves in a fixed-bed adsorption process


  • Marek Nedoma Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Energy Engineering, Technická 1902/4, 160 00 Prague 6, Czech Republic
  • Marek Staf University of Chemistry and Technology, Department of Gaseous and Solid Fuels and Air Protection, Technická 5, 166 28 Prague 6, Czech Republic https://orcid.org/0000-0003-2316-174X
  • Jan Hrdlička Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Energy Engineering, Technická 1902/4, 160 00 Prague 6, Czech Republic https://orcid.org/0000-0003-4569-0394




adsorption, breakthrough experiment, CO2 capture, mathematical modeling, sensitivity analysis


This paper focuses on the laboratory experiments of low-temperature adsorption of CO2 at elevated pressure and on the validation of our mathematical model with the data obtained. The numerical approach uses fitting of adsorption isotherm parameters and sensitivity analysis of parameters influencing the breakthrough curve shape and onset time. We first evaluate the results of breakthrough experiments for zeolite 13X. Then, we use the results obtained to design a dynamic mathematical model to predict the breakthrough curve profile. Experimental results show that zeolite 13X possesses high adsorption capacities (over 10 % of its weight at adsorption temperatures of 293 K and below), as expected. The mathematical simulation was accurate at predicting the breakthrough onset time; however, this prediction accuracy declined with the outlet CO2 concentration exceeding 75 %, which is discussed. The sensitivity analysis indicated that the choice of different estimates of mass transport and bed porosity, as well as the choice of numerical scheme, can lead to a more accurate prediction, but the same set of parameters is not suitable for all process conditions.


Download data is not yet available.


D. Coe, W. Fabinski, G. Wiegleb. The Impact of CO2, H2O and Other ”Greenhouse Gases” on Equilibrium Earth Temperatures, International Journal of Atmospheric and Oceanic Sciences 5(2):29-40, 2021. https://doi.org/10.11648/j.ijaos.20210502.12.

M. Menner, G. Reichert. EU Climate Policy in Light of the Corona Crisis. cepInput. No. 18, 2020. https://www.cep.eu/fileadmin/user_upload/cep.eu/Studien/cepInput_Klima_und_Corona/cepInput_EU_Climate_Policy_in_Light_of_the_Corona_Crisis_01.pdf.

S. E. Zanco, J.-F. Pérez-Calvo, A. Gasós, et al. Postcombustion CO2 Capture: A Comparative Techno-Economic Assessment of Three Technologies Using a Solvent, an Adsorbent, and a Membrane. ACS Engineering Au 1(1):50-72, 2021. https://doi.org/10.1021/acsengineeringau.1c00002.

M. M. F. Hasan, R. C. Baliban, J. A. Elia, et al. Modeling, Simulation, and Optimization of Postcombustion CO2 Capture for Variable Feed Concentration and Flow Rate. 1. Chemical Absorption and Membrane Processes. Industrial & Engineering Chemistry Research 51(48):15642-64, 2012. https://doi.org/10.1021/ie301571d.

M. M. F. Hasan, R. C. Baliban, J. A. Elia, et al. Modeling, Simulation, and Optimization of Postcombustion CO2 Capture for Variable Feed Concentration and Flow Rate. 2. Pressure Swing Adsorption and Vacuum Swing Adsorption Processes. Industrial & Engineering Chemistry Research 51(48):15665-82, 2012. https://doi.org/10.1021/ie301572n.

C. Song, Q. Liu, N. Ji, et al. Alternative pathways for efficient CO2 capture by hybrid processes - A review. Renewable and Sustainable Energy Reviews 82:215-31, 2018. https://doi.org/10.1016/j.rser.2017.09.040.

T. Zarogiannis, A. I. Papadopoulos, P. Seferlis. Systematic selection of amine mixtures as post-combustion CO2 capture solvent candidates. Journal of Cleaner Production 136:159-75, 2016. https://doi.org/10.1016/j.jclepro.2016.04.110.

M. Sheng, S. Dong, Z. Qiao, et al. Large-scale preparation of multilayer composite membranes for post-combustion CO2 capture. Journal of Membrane Science 636, 2021. https://doi.org/10.1016/j.memsci.2021.119595.

N. Fouladi, M. A. Makarem, M. A. Sedghamiz, et al. CO2 adsorption by swing technologies and challenges on industrialization. In Advances in Carbon Capture, p. 241-67. 2020. https://doi.org/10.1016/b978-0-12-819657-1.00011-6.

C. Dhoke, A. Zaabout, S. Cloete, et al. Review on Reactor Configurations for Adsorption-Based CO2 Capture. Industrial & Engineering Chemistry Research 60(10):3779-98, 2021. https://doi.org/10.1021/acs.iecr.0c04547.

F. Raganati, R. Chirone, P. Ammendola. CO2 Capture by Temperature Swing Adsorption: Working Capacity As Affected by Temperature and CO2 Partial Pressure. Industrial & Engineering Chemistry Research 59(8):3593-605, 2020. https://doi.org/10.1021/acs.iecr.9b04901.

K. N. Son, T.-M. J. Richardson, G. E. Cmarik. Equilibrium Adsorption Isotherms for H2O on Zeolite 13X. Journal of Chemical & Engineering Data 64(3):1063-71, 2019. https://doi.org/10.1021/acs.jced.8b00961.

F. Raganati, F. Miccio, P. Ammendola. Adsorption of Carbon Dioxide for Post-combustion Capture: A Review. Energy & Fuels 35(16):12845-68, 2021. https://doi.org/10.1021/acs.energyfuels.1c01618.

D. Danaci, M. Bui, N. Mac Dowell, et al. Exploring the limits of adsorption-based CO2 capture using MOFs with PVSA - from molecular design to process economics. Molecular Systems Design & Engineering 5(1):212-31, 2020. https://doi.org/10.1039/c9me00102f.

P. Ammendola, F. Raganati, R. Chirone, et al. Fixed bed adsorption as affected by thermodynamics and kinetics: Yellow tuff for CO2 capture. Powder Technology 373:446-58, 2020. https://doi.org/10.1016/j.powtec.2020.06.075.

D. Bahamon, A. Díaz-Márquez, P. Gamallo, et al. Energetic evaluation of swing adsorption processes for CO 2 capture in selected MOFs and zeolites: Effect of impurities. Chemical Engineering Journal 342:458-73, 2018. https://doi.org/10.1016/j.cej.2018.02.094.

A. A. Abd, S. Z. Naji, A. S. Hashim, et al. Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. Journal of Environmental Chemical Engineering 8(5), 2020. https://doi.org/10.1016/j.jece.2020.104142.

J. A. A. Gibson, E. Mangano, E. Shiko, et al. Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Plants: AMPGas. Industrial & Engineering Chemistry Research 55(13):3840-51, 2016. https://doi.org/10.1021/acs.iecr.5b05015.

M. Xu, S. Chen, D.-K. Seo, et al. Evaluation and optimization of VPSA processes with nanostructured zeolite NaX for post-combustion CO2 capture. Chemical Engineering Journal 371:693-705, 2019. https://doi.org/10.1016/j.cej.2019.03.275.

D. Sachde, R. McKaskle, J. Lundeen, et al. Review of Technical Challenges, Risks, Path Forward, and Economics of Offshore CO2 Transportation and Infrastructure. Offshore Technology Conference, Houston, Texas, USA, 6 - 9 May 2019, 2019. https://doi.org/10.4043/29253-MS.

S. G. Subraveti, S. Roussanaly, R. Anantharaman, et al. Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas. Separation and Purification Technology 256, 2021. https://doi.org/10.1016/j.seppur.2020.117832.

M. Nait Amar, H. Ouaer, M. Abdelfetah Ghriga. Robust smart schemes for modeling carbon dioxide uptake in metal-organic frameworks. Fuel 311, 2022. https://doi.org/10.1016/j.fuel.2021.122545.

A. H. Farmahini, S. Krishnamurthy, D. Friedrich, et al. Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews 121(17):10666-741, 2021. https://doi.org/10.1021/acs.chemrev.0c01266.

S. Li, S. Deng, L. Zhao, et al. Mathematical modeling and numerical investigation of carbon capture by adsorption: Literature review and case study. Applied Energy 221:437-49, 2018. https://doi.org/10.1016/j.apenergy.2018.03.093.

B. Miklová, M. Staf, V. Kyselová. Influence of ash composition on high temperature CO2 sorption. Journal of Environmental Chemical Engineering 7(2), 2019. https://doi.org/10.1016/j.jece.2019.103017.

J. Zhang, P. Xiao, G. Li, et al. Effect of flue gas impurities on CO2 capture performance from flue gas at coal-fired power stations by vacuum swing adsorption. Energy Procedia 1(1):1115-22, 2009. https://doi.org/10.1016/j.egypro.2009.01.147.

P. Xiao, J. Zhang, P. Webley, et al. Capture of CO2 from flue gas streams with zeolite 13X byăvacuumpressure swing adsorption. Adsorption 14(4-5):575-82, 2008. https://doi.org/10.1007/s10450-008-9128-7 .

B. E. Poling, J. M. Prausnitz, J. P. O’Connell. The Properties of Gases and Liquids, 5th ed. McGraw-Hill Education, 768 p, 2001. ISBN 9780071499996.

M. S. Shafeeyan, W. M. A. Wan Daud, A. Shamiri. A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption. Chemical Engineering Research and Design 92(5):961-88, 2014. https://doi.org/10.1016/j.cherd.2013.08.018.

N. S. Wilkins, A. Rajendran, S. Farooq. Dynamic column breakthrough experiments for measurement of adsorption equilibrium and kinetics Adsorption 27(3):397-422, 2020. https://doi.org/10.1007/s10450-020-00269-6.

A. Malek, S. Farooq, M. N. Rathor, et al. Effect of velocity variation due to adsorption-desorption on equilibrium data from breakthrough experiments. Chemical Engineering Science 50(4):737-40, 1995. https://doi.org/10.1016/0009-2509(94)00245-m.

A. Ribeiro, P. Neto, C. Pinho. Mean porosity and pressure drop measurements in packed beds of monosized spheres: side wall effects. International Review of Chemical Engineering, 2(1):40-46, 2010. [33] J. M. P. Q. Delgado. Longitudinal and Transverse Dispersion in Porous Media. Chemical Engineering Research and Design 85(9):1245-52, 2007. https://doi.org/10.1205/cherd07017.

G. Langer, A. Roethe, K. P. Roethe, et al. Heat and mass transfer in packed beds-III. Axial mass dispersion. International Journal of Heat and Mass Transfer 21(6):751-9, 1978. https://doi.org/10.1016/0017-9310(78)90037-6.

E. Glueckauf, J. I. Coates. 241. Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation. Journal of the Chemical Society (Resumed), 1947. https://doi.org/10.1039/jr9470001315.

D. M. Ruthven, M. F. M. Post. Chapter 12 Diffusion in zeolite molecular sieves. In Introduction to Zeolite Science and Practice, Studies in Surface Science and Catalysis, p. 525-77. 2001. https://doi.org/10.1016/s0167-2991(01)80254-8.

K. Ciahotný, A. Vagenknechtová, M. Netušil, et al. Adsorption Drying of Natural Gas Under High Pressure. Oil Gas European Magazine, 40(2):91-95, 2014.

X. Hu, E. Mangano, D. Friedrich, et al. Diffusion mechanism of CO2 in 13X zeolite beads. Adsorption 20(1):121-35, 2013. https://doi.org/10.1007/s10450-013-9554-z.

S. Krishnamurthy, R. Blom, M. C. Ferrari, et al. Adsorption and diffusion of CO2 in CPO-27-Ni beads. Adsorption 26(5):711-21, 2019. https://doi.org/10.1007/s10450-019-00162-x.

P. V. Danckwerts. Continuous flow systems. Chemical Engineering Science 2(1):1-13, 1953. https://doi.org/10.1016/0009-2509(53)80001-1.

S. Javeed, S. Qamar, W. Ashraf, et al. Analysis and numerical investigation of two dynamic models for liquid chromatography. Chemical Engineering Science 90:17-31, 2013. https://doi.org/10.1016/j.ces.2012.12.014.

M. Thommes, K. Kaneko, A. V. Neimark, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87(9-10):1051-69, 2015. https://doi.org/10.1515/pac-2014-1117.

M. Hefti, D. Marx, L. Joss, et al. Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-5 and 13X. Microporous and Mesoporous Materials 215:215-28, 2015. https://doi.org/10.1016/j.micromeso.2015.05.044.

NIST Data Resources for Adsorption Science and Technology. IST/ARPA-E Database of Novel and Emerging Adsorbent Material. https://adsorption.nist.gov/index.php#home.

K. N. Pai, V. Prasad, A. Rajendran. Practically Achievable Process Performance Limits for Pressure-Vacuum Swing Adsorption-Based Postcombustion CO2 Capture. ACS Sustainable Chemistry & Engineering 9(10):3838-49, 2021. https://doi.org/10.1021/acssuschemeng.0c08933.

H. Bekhti, H. Bouchafaa, R. Melouki, et al. Adsorption of CO2 over MgO-Impregnated NaY zeolites and modeling study. Microporous and Mesoporous Materials 294, 2020. https://doi.org/10.1016/j.micromeso.2019.109866.

S. Sircar, R. Kumar, K. J. Anselmo. Effects of column nonisothermality or nonadiabaticity on the adsorption breakthrough curves. Industrial & Engineering Chemistry Process Design and Development 22(1):10-5, 2002. https://doi.org/10.1021/i200020a002.

B. Berdenova, A. Pal, B. B. Saha, et al. Non-isothermal pore change model predicting CO2 adsorption onto consolidated activated carbon. International Journal of Heat and Mass Transfer 177, 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121480.

P. Bollini, N. A. Brunelli, S. A. Didas, et al. Dynamics of CO2 Adsorption on Amine Adsorbents. 1. Impact of Heat Effects. Industrial & Engineering Chemistry Research 51(46):15145-52, 2012. https://doi.org/10.1021/ie301790a.

I. Roušar, P. Ditl. Numerical Simulation of Multicomponent Isobaric Adsorption in Fixed Bed Columns. Adsorption Science & Technology 3(2):49-59, 1986. https://doi.org/10.1177/026361748600300201.

J. M. P. Q. Delgado. A critical review of dispersion in packed beds. Heat and Mass Transfer, 2005, 42(4), 279-310, https://doi.org/10.1007/s00231-005-0019-0.

A. G. Dixon. Correlations for wall and particle shape effects on fixed bed bulk voidage. The Canadian Journal of Chemical Engineering 66(5):705-8, 1988. https://doi.org/10.1002/cjce.5450660501.

N. Wakao, T. Funazkri. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Chemical Engineering Science 33(10):1375-84, 1978. https://doi.org/10.1016/0009-2509(78)85120-3.

Ch. Tien. Introduction to Adsorption. Elsevier (S&T), 2019. ISBN 978-0-12-816446-4.

G. D. Silcox, J. J. Noble, A. F. Saforim et al. Heat & Mass Transfer. In: Don W. Green, Marylee Z. Southard. Perry’s Chemical Engineers’ Handbook, 9th Edition. McGraw-Hill Education, p. 510-583, 2019. ISBN 978-0-07-183409-4.