Experimental study of the torsional effect for yarn break load test of polymeric multifilaments

Authors

DOI:

https://doi.org/10.14311/AP.2022.62.0538

Keywords:

Yarn Break Load, twist effect, maximum breaking strength, polymeric multifilaments

Abstract

Polymeric multifilaments have gained a significant interest in recent decades. In the studies of mechanical characteristics, although there are different types of tests, such as rupture, abrasion, creep, impact and fatigue, it can be said that the main mechanical characterisation is the tensile rupture strength (Yarn Break Load, YBL), which also serves as a parameter for other tests. The objective of this work is to evaluate the results of breaking strength under different torsional conditions in polymeric multifilaments and to determine optimal twists for failures. The test were carried out with the following materials: polyamide, polyester, and high modulus polyethylene (HMPE), and for torsional conditions: 0, 20, 40, 60, 120, 240, and 480 turns per metre. As a result, for these torsion groups, curves were obtained for the three materials that present an optimal point of maximum rupture value, which was also experimentally proven. The twist that optimises the breaking strength of HMPE is 38 turns per metre, 56 turns per metre for polyester, and 95 turns per metre for polyamide. The twist groups that exceed the optimal torsion have a deleterious effect on the material, where the multifilament ceases to be homogeneous and starts to create an excessive "spring effect". The results found differ from the recommendation of the standard that regulates the YBL test, and thus, a relationship is built between groups of optimal torsion and linear density that provides evidence that the increase in linear density causes the optimal torsion for rupture to also increase, while the standard places a condition of 30 turns per metre for linear densities greater than 2200 dtex, and 60 turns per metre for linear densities less than 2200 dtex. In addition to optimal torsion values, this conclusion is paramount, the test procedure makes a general recommendation that does not optimise the breaking strength.

Downloads

Download data is not yet available.

References

E. Hage Jr. Aspectos históricos sobre o desenvolvimento da ciência e da tecnologia de polímeros. Polímeros 8(2):6–9, 1998. https://doi.org/10.1590/S0104-14281998000200003.

W. D. Callister Jr. Ciência e engenharia de materiais. Editora LTC, Rio de Janeiro, 7th edn., 2008.

D. S. D. Rosa. Correlação entre Envelhecimentos Acelerado e Natural do Polipropileno Isotático (PPi). Ph.D. thesis, Universidade Estadual de Campinas, 1996.

H. A. Mckenna, J. W. S. Hearle, N. O’hear. Handbook of fibre rope technology. Elsevier, 2004.

L. A. Santos. Desenvolvimento de cimento de fosfato de cálculo reforçado por fibras para uso na área médico-odontológica. Ph.D. thesis, Universidade Estadual de Campinas, 2002.

H. da Costa Mattos, F. Chimisso. Modelling creep tests in HMPE fibres used in ultra-deep-sea mooring ropes. International Journal of Solids and Structures 48(1):144–152, 2011. https://doi.org/10.1016/j.ijsolstr.2010.09.015.

M. B. Bastos, L. F. Haach, D. T. Poitevin. Prospects of synthetic fibers for deepwater mooring. In Rio Oil and Gas 2010, IBP2745_10. 2010.

S. Leite, P. E. Griffin, R. Helminem, R. D. S. Challenges and achievements in the manufacturing of DWM polyester tether ropes for the Chevron Tahiti projects – Gulf of Mexico. In Rio Oil and Gas 2010, IBP2291_10. 2010.

Y. Chevillotte, Y. Marco, G. Bles, et al. Fatigue of improved polyamide mooring ropes for floating wind turbines. Ocean Engineering 199:107011, 2020. https://doi.org/10.1016/j.oceaneng.2020.107011.

C. J. M. Del Vecchio. Light Weight Materials for deep Water Moorings. Ph.D. thesis, University of Reading, UK, 1992.

C. Berryman, R. Dupin, N. Gerrits. Laboratory study of used HMPE MODU mooring lines. In Offshore Technology Conference, OTC-14245-MS. 2002. https://doi.org/10.4043/14245-MS.

I. Corbetta, F. Sloan. HMPE mooring line trial for scarabeo III. In Offshore Technology Conference, OTC-13272-MS. 2001. https://doi.org/10.4043/13272-ms.

E. L. V. Louzada, C. E. M. Guilherme, F. T. Stumpf. Evaluation of the fatigue response of polyester yarns after the application of abrupt tension loads. Acta Polytechnica CTU Proceedings 7:76–78, 2017. https://doi.org/10.14311/APP.2017.7.0076.

V. Sry, Y. Mizutani, G. Endo, et al. Consecutive impact loading and preloading effect on stiffness of woven synthetic-fiber rope. Journal of Textile Science and Technology 3:1–16, 2017. https://doi.org/10.4236/jtst.2017.31001.

E. S. Belloni, F. M. Clain, C. E. M. Guilherme. Post-impact mechanical characterization of HMPE yarns. Acta Polytechnica 61(3):406–414, 2021. https://doi.org/10.14311/ap.2021.61.0406.

D. M. Cruz, E. S. Belloni, F. M. Clain, C. E. M. Guilherme. Analysis of impact cycles applied to dry polyamide multifilaments and immersed in water. Rio Oil and Gas Expo and Conference 20(2020):199–200, 2020. https://doi.org/10.48072/2525-7579.rog.2020.199.

I. Melito, E. S. Belloni, M. B. Bastos, et al. Effects of mechanical degradation on the stiffness of polyester yarns. Rio Oil and Gas Expo and Conference 20(2020):176–177, 2020. https://doi.org/10.48072/2525-7579.rog.2020.176.

L. Cofferri, C. E. M. Guilherme, F. T. Stumpf. Application of the stepped isothermal method to evaluate creep behavior in high-modulus polyethylene yarns. In 27º Congresso Internacional de Transporte Aquaviário, Construção Naval e Offshore. 2018. https://doi.org/10.17648/sobena-2018-87587.

L. Caldeira, P. Lucas, F. Chimisso. Creep comparative behavior of HMPE (high modulus polyethylene) multifilaments when submitted to changing conditions of temperature and load. In Youth Symposium on Experimental Solid Mechanics, pp. 99–102. 2010.

Y. Rao, R. J. Farris. A modeling and experimental study of the influence of twist on the mechanical properties of high-performance fiber yarns. Journal Of Applied Polymer Science 77(9):1938–1949, 2000. https://doi.org/d7d27p.

International Organization for Standardization. Textiles – Standard atmospheres for conditioning and testing (ISO Standard No. 139), 2005.

American Society for Testing and Materials. Standard test methods for linear density of textile fibers (ASTM Standard No. D1577), 2018.

W. W. Hines, D. C. Montgomery, D. M. Goldsman, C. M. Borror. Probabilidade e estatística na engenharia. Editora LTC, Rio de Janeiro, 4th edn., 2006.

P. A. Barbetta, M. M. Reis, A. C. Bornia. Estatística: para cursos de engenharia e informática. Atlas, São Paulo, 2010.

P. A. Morettin, S. Hazzan, W. O. Bussab. Cálculo – Funções de uma e várias variáveis. Editora Saraiva, São Paulo, 3rd edn., 2012.

International Organization for Standardization. Textiles – Yarns from packages – Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester (ISO Standard No. 2062), 2009.

O. Helene. Método dos Mínimos Quadrados com Formalismo Matricial. Livraria da Física, São Paulo, 2006.

Downloads

Published

2022-10-31

Issue

Section

Articles