Effect of cross-sections data on calculated static neutronic parameters of PWR MOX/UO2 core transient benchmark case using NODAL3 code

Authors

  • Wahid Luthfi Research Center for Nuclear Reactor Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), 80th Building Science and Technology Research Center (PUSPIPTEK), South Tangerang, Banten, Indonesia https://orcid.org/0000-0002-4499-3433
  • Surian Pinem Research Center for Nuclear Reactor Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), 80th Building Science and Technology Research Center (PUSPIPTEK), South Tangerang, Banten, Indonesia https://orcid.org/0000-0001-6990-1059

DOI:

https://doi.org/10.14311/AP.2023.63.0242

Keywords:

PWR MOX/UO2 transient benchmark, cross-sections, neutronic parameter, NODAL3

Abstract

This paper describes the effect of cross-section data generated by several codes on calculated neutronic parameters. The Pressurized Water Reactor Mixed Oxide and Uranium Oxide (PWR MOX/UO2) Core Transient Benchmark case was chosen because it has been used widely to validate neutronic codes. The cross-section data in this study will be generated by SRAC, Serpent, and HELIOS codes. The NODAL3 code will be used to calculate neutronic parameters from each cross-section. The neutronic parameters calculated by NODAL3 are the effective multiplication factor (keff), control rod worth, critical boron concentration, and power distribution under Hot Zero Power (HZP) conditions. The Power-Weighted Error (PWE) and Error-Weighted Error (EWE), as a measure of the relative error in fuel assembly power, are less than 5 %, indicating that the calculation is consistent with DeCART as a reference. The difference in calculated radial power peaking factor for all three cross-sections to reference data reaches 6.284 % (G-3), 8.438 % (G-3), and 10.998 % (C-7), respectively, for SRAC, Serpent, and HELIOS. The axial power distribution calculated by NODAL3 at the top and bottom of the reactor core has a relative error that peaked at 16.60 %, 13.86 %, and 10.20 %, respectively, for cross-sections provided by SRAC, Serpent, and HELIOS. Further improvements are needed for NODAL3 by applying various discontinuity factors to improve its performance.

Downloads

Download data is not yet available.

References

T. M. Sembiring, S. Pinem. The validation of the NODAL3 code for static cases of the PWR benchmark core. Jurnal IPTEK Nuklir Ganendra 15(2):82–92, 2012.

S. Pinem, T. M. Sembiring, P. H. Liem. The verification of coupled neutronics thermal-hydraulics code NODAL3 in the PWR rod ejection benchmark. Science and Technology of Nuclear Installations 2014:845832, 2014. https://doi.org/10.1155/2014/845832

S. Pinem, T. M. Sembiring, P. H. Liem. NODAL3 sensitivity analysis for NEACRP 3D LWR core transient benchmark (PWR). Science and Technology of Nuclear Installations 2016:7538681, 2016. https://doi.org/10.1155/2016/7538681

T. M. Sembiring, S. Pinem, P. H. Liem. Analysis of NEA-NSC PWR uncontrolled control rod withdrawal at zero power benchmark cases with NODAL3 code. Science and Technology of Nuclear Installations 2017:5151890, 2017. https://doi.org/10.1155/2017/5151890

S. M. Reda, I. M. Gomaa, I. I. Bashter, E. A. Amin. Effect of MOX fuel and the ENDF/B-VIII on the AP1000 neutronics parametrs calculation by using MCNP6. Nuclear Technology and Radiation Protection 34(4):325–335, 2019. https://doi.org/10.2298/NTRP190705002R

T. Sakai, T. Yamamoto. Neutron cross section sensitivity analysis of UO2 and MOX core physics experiments on light water reactors. Journal of Nuclear Science and Technology 51(2):240–250, 2014. https://doi.org/10.1080/00223131.2013.856774

T. Kozlowski, T. J. Downar. PWR MOX/UO2 core transient benchmark – final report. NEA/NSC/DOC(2006)20, Nuclear Energy Agency Organization for Economic Co-operation and Development, 70 pp., 2006, https://www.oecd-nea.org/science/wprs/MOX-UOX-transients/benchmark_documents/final_report/mox-uo2-bench.pdf.

J. Choe, S. Choi, P. Zhang, et al. Verification and validation of STREAM/RAST-K for PWR analysis. Nuclear Engineering and Technology 51(2):356–368, 2019. https://doi.org/10.1016/j.net.2018.10.004

W. Luthfi, S. Pinem. Calculation of 2-dimensional PWR MOX/UO2 core benchmark OECD NEA 6048 with SRAC code. Tri Dasa Mega Jurnal Teknologi Reaktor Nuklir 22(3):89–96, 2020. https://doi.org/10.17146/tdm.2020.22.3.5955

M. Pecchia, G. Kotev, C. Parisi, F. D’Auria. MOx benchmark calculations by deterministic and Monte Carlo codes. Nuclear Engineering and Design 246:63–68, 2012. https://doi.org/10.1016/j.nucengdes.2011.10.005

Purdue University. OECD/NEA and U.S. NRC PWR MOX/UO2 core transient benchmark. 2004, [2020-07-07], https://engineering.purdue.edu/PARCS/MOX_Benchmark.

M. Imron, D. Hartanto. Pressurized water reactor mixed Oxide/UO2 transient benchmark calculations using Monte Carlo Serpent 2 code and open nodal core simulator ADPRES. Journal of Nuclear Engineering and Radiation Science 7(3):031603, 2021. https://doi.org/10.1115/1.4048764

K. Okumura, T. Kugo, K. Kaneko, K. Tsuchihashi. SRAC2006: A comprehensive neutronics calculation code system. Tokai: JAEA, pp. 44–64, Japan, 2007. https://doi.org/10.11484/jaea-data-code-2007-004

S. Pinem, T. M. Sembiring, T. Surbakti, et al. Reactivity coefficient calculation for AP1000 reactor using the NODAL3 code. Journal of Physics: Conference Series 962:012057, 2018. https://doi.org/10.1088/1742-6596/962/1/012057

S. Pinem, T. M. Sembiring, T. Surbakti. PWR fuel macroscopic cross section analysis for calculation core fuel management benchmark. Journal of Physics: Conference Series 1198:022065, 2019. https://doi.org/10.1088/1742-6596/1198/2/022065

A. Rohatgi. WebPlotDigitizer version 4.6. 2022, [2023-05-02], https://automeris.io/WebPlotDigitizer.

Downloads

Published

2023-09-05

How to Cite

Luthfi, W., & Pinem, S. (2023). Effect of cross-sections data on calculated static neutronic parameters of PWR MOX/UO2 core transient benchmark case using NODAL3 code. Acta Polytechnica, 63(4), 242–249. https://doi.org/10.14311/AP.2023.63.0242

Issue

Section

Articles