Induction motor mechanical defect diagnosis using DWT under different loading levels

Authors

  • Ahcene Bouzida University of Bouira, Faculty of Sciences and Applied Sciences, Department of Electrical Engineering, 10000, Bouira, Algeria
  • Radia Abdelli University of Bejaia, Faculty of Technology, Department of Electrical Engineering, 06000, Bejaia, Algeria
  • Aimad Boudouda University of Boumerdes, Faculty of Technology, Laboratoire Ingénierie des Systèmes et Télécommunications (LIST), 35000, Boumerdes, Algeria

DOI:

https://doi.org/10.14311/AP.2023.63.0001

Keywords:

induction motor, fault diagnosis, eccentricity, misalignment, DWT, energy, loading levels

Abstract

The information extraction capability of the widely used signal processing tool, FFT for diagnosing induction machines, is commonly used at a constant load or at different levels. The loading level is a major influencing factor in the diagnostic process when the coupled load and the machine come with natural mechanical imperfections, and at a low load, the mechanical faults harmonics are strongly influenced. In this context, the main objective of this work is the detection of the mechanical faults and the study of the effect of the loading level on the induction motor diagnostic process. We have employed a diagnosis method based on discrete wavelet transform (DWT) for the multi-level decomposition of stator current and extracting the fault’s energy stored over a wide frequency range. The proposed approach has been experimentally tested on a faulty machine with dynamic eccentricity and a shaft misalignment for three loading levels. The proposed method is experimentally tested and the results are provided to verify the effectiveness of the fault detection and to point out the importance of the coupled load.

Downloads

Download data is not yet available.

References

O. E. Hassan, M. Amer, A. K. Abdelsalam, B. W. Williams. Induction motor broken rotor bar fault detection techniques based on fault signature analysis – a review. IET Electric Power Applications 12(7):895–907, 2018. https://doi.org/10.1049/iet-epa.2018.0054

S. K. Ramu, G. C. R. Irudayaraj, S. Subramani, U. Subramaniam. Broken rotor bar fault detection using hilbert transform and neural networks applied to direct torque control of induction motor drive. IET Power Electronics 13(15):3328–3338, 2020. https://doi.org/10.1049/iet-pel.2019.1543

K. Gyftakis, P. Panagiotou, D. Spyrakis. Detection of simultaneous mechanical faults in 6 kV pumping induction motors using combined MCSA and stray flux methods. IET Electric Power Applications pp. 1–8, 2020 [E-First]. https://doi.org/10.1049/iet-epa.2020.0099

H. S. Gerçekcıoğlu, M. Akar. Instantaneous power signature analysis for misalignment fault diagnosis in 3-phased induction motors. In 2018 26th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE. https://doi.org/10.1109/SIU.2018.8404303

R. A. Ayon-Sicaeros, E. Cabal-Yepez, L. M. Ledesma-Carrillo, G. Hernandez-Gomez. Broken-rotor-bar detection through STFT and windowing functions. In 2019 IEEE Sensors Applications Symposium (SAS), pp. 1–5. IEEE. https://doi.org/10.1109/SAS.2019.8706086

P. Lombard, V. Fireteanu, A.-I. Constantin. Influences on the electromagnetic torque and rotor force of different faults in squirrel-cage induction motors. International Journal of Applied Electromagnetics and Mechanics 59(3):805–815, 2019. https://doi.org/10.3233/jae-171136

A. Kucuker, M. Bayrak. Detection of mechanical imbalances of induction motors with instantaneous power signature analysis. Journal of Electrical Engineering and Technology 8(5):1116–1121, 2013. https://doi.org/10.5370/jeet.2013.8.5.1116

W. T. Thomson. Vibration monitoring of induction motors and case histories on shaft misalignment and soft foot. In Vibration Monitoring of Induction Motors, pp. 1–46. Cambridge University Press, 2020. https://doi.org/10.1017/9781108784887.002

T. Goktas, M. Arkan, M. S. Mamis, B. Akin. Separation of induction motor rotor faults and low frequency load oscillations through the radial leakage flux. In 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3165–3170. IEEE, 2017. https://doi.org/10.1109/ecce.2017.8096576

C. Prakash, R. K. Saini. IoT-based monitoring and controlling of crop field and induction motor protection from voltage fluctuation. Agricultural Journal 15(4):49–56, 2020. https://doi.org/10.36478/aj.2020.49.56

R. R. Schoen, T. G. Habetler. Evaluation and implementation of a system to eliminate arbitrary load effects in current-based monitoring of induction machines. In IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting, vol. 1, pp. 671–678. IEEE. https://doi.org/10.1109/ias.1996.557108

M. Singh, A. G. Shaik. Broken rotor bar fault diagnosis of a three-phase induction motor using discrete wavelet transform. In 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), pp. 13–17. IEEE, 2019. https://doi.org/10.1109/gtdasia.2019.8715925

O. Bolshunova, A. Kamyshian, A. Bolshunov. Diagnostics of career dump truck traction induction motors technical condition using wavelet analysis. In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics), pp. 1–4. IEEE. https://doi.org/10.1109/Dynamics.2016.7818988

M. Z. Ali, M. N. S. K. Shabbir, S. M. K. Zaman, X. Liang. Single- and multi-fault diagnosis using machine learning for variable frequency drive-fed induction motors. IEEE Transactions on Industry Applications 56(3):2324–2337, 2020. https://doi.org/10.1109/tia.2020.2974151

M. Z. Ali, M. N. S. K. Shabbir, X. Liang, et al. Machine learning-based fault diagnosis for single- and multi-faults in induction motors using measured stator currents and vibration signals. IEEE Transactions on Industry Applications 55(3):2378–2391, 2019. https://doi.org/10.1109/tia.2019.2895797

F. Wu, Y. Hao, J. Zhao, Y. Liu. Current similarity based open-circuit fault diagnosis for induction motor drives with discrete wavelet transform. Microelectronics Reliability 75:309–316, 2017. https://doi.org/10.1016/j.microrel.2017.05.036

T. K. Sarkar, C. Su, R. Adve, et al. A tutorial on wavelets from an electrical engineering perspective. I. Discrete wavelet techniques. IEEE Antennas and Propagation Magazine 40(5):49–68, 1998. https://doi.org/10.1109/74.735965

B. A. Vinayak, K. A. Anand, G. Jagadanand. Wavelet-based real-time stator fault detection of inverter-fed induction motor. IET Electric Power Applications 14(1):82–90, 2020. https://doi.org/10.1049/iet-epa.2019.0273

A. Bouzida, O. Touhami, R. Ibtiouen, et al. Fault diagnosis in industrial induction machines through discrete wavelet transform. IEEE Transactions on Industrial Electronics 58(9):4385–4395, 2010. https://doi.org/10.1109/TIE.2010.2095391

T. Ameid, A. Menacer, H. Talhaoui, Y. Azzoug. Discrete wavelet transform and energy eigen value for rotor bars fault detection in variable speed field-oriented control of induction motor drive. ISA Transactions 79:217–231, 2018. https://doi.org/10.1016/j.isatra.2018.04.019

N. R. Alham, R. M. Utomo, D. A. Asfani, et al. Detection of unbalanced voltage supply and static eccentricity on three-phase induction motor using discrete wavelet transform. In 2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 269–274. IEEE. https://doi.org/10.1109/ICITEE49829.2020.9271691

M. A. Mohamed, A.-A. A. Mohamed, M. Abdel-Nasser, et al. Induction motor broken rotor bar faults diagnosis using ANFIS-based DWT. International Journal of Modelling and Simulation 41(3):220–233, 2021. https://doi.org/10.1080/02286203.2019.1708173

B. Belkacemi, S. Saad, Z. Ghemari, et al. Detection of induction motor improper bearing lubrication by discrete wavelet transforms (DWT) decomposition. Instrumentation Mesure Métrolo 19(5):347–354, 2020. https://doi.org/10.18280/i2m.190504

I. Chouidira, D. Khodja, S. Chakroune. Continuous wavelet technique for detection of broken bar faults in induction machine. Traitement du Signal 36(2):171–176, 2019. https://doi.org/10.18280/ts.360207

K. Tian, T. Zhang, Y. Ai, W. Zhang. Induction motors dynamic eccentricity fault diagnosis based on the combined use of WPD and EMD-simulation study. Applied Sciences 8(10):1709, 2018. https://doi.org/10.3390/app8101709

Nikhil, L. Mathew, A. Sharma. Various indices for diagnosis of air-gap eccentricity fault in induction motor – a review. IOP Conference Series: Materials Science and Engineering 331:012032, 2018. https://doi.org/10.1088/1757-899x/331/1/012032

G. Mirzaeva, K. I. Saad. Advanced diagnosis of rotor faults and eccentricity in induction motors based on internal flux measurement. IEEE Transactions on Industry Applications 54(3):2981–2991, 2018. https://doi.org/10.1109/TIA.2018.2805730

A. Ortiz, J. Garrido, Q. Hernandez-Escobedo, B. Escobedo-Trujillo. Detection of misalignment in motor via transient current signature analysis. In 2019 IEEE International Conference on Engineering Veracruz (ICEV), vol. 1, pp. 1–5. IEEE. https://doi.org/10.1109/ICEV.2019.8920719

A. F. Aimer, A. H. Boudinar, M. E. A. Khodja, et al. Monitoring and fault diagnosis of induction motors mechanical faults using a modified auto-regressive approach. In Advanced Control Engineering Methods in Electrical Engineering Systems, pp. 390–410. Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-97816-1_30

R. S. C. Pal, A. R. Mohanty. A simplified dynamical model of mixed eccentricity fault in a three-phase induction motor. IEEE Transactions on Industrial Electronics 68(5):4341–4350, 2020. https://doi.org/10.1109/TIE.2020.2987274

S. Prainetr, S. Tunyasrirut, S. Wangnipparnto. Testing and analysis fault of induction motor for case study misalignment installation using current signal with energy coefficient. World Electric Vehicle Journal 12(1):37, 2021. https://doi.org/10.3390/wevj12010037

Downloads

Published

2023-03-02

Issue

Section

Articles

How to Cite

Bouzida, A., Abdelli, R., & Boudouda, A. (2023). Induction motor mechanical defect diagnosis using DWT under different loading levels. Acta Polytechnica, 63(1), 1-10. https://doi.org/10.14311/AP.2023.63.0001
Received 2022-06-11
Accepted 2022-12-11
Published 2023-03-02