Heat transfer characteristics of double pipe heat exchanger having externally enhanced inner pipe

Authors

  • Balasubramanian Vijayaragavan Mepco Schlenk Engineering College, Department of Mechanical Engineering, Sivakasi, Virudhunagar District- 626005, Tamilnadu, India
  • Suyambu Pandian Asok Mepco Schlenk Engineering College, Department of Mechanical Engineering, Sivakasi, Virudhunagar District- 626005, Tamilnadu, India
  • Chandrasekar Ramalekshmi Shakthi Ganesh Mepco Schlenk Engineering College, Department of Mechanical Engineering, Sivakasi, Virudhunagar District- 626005, Tamilnadu, India

DOI:

https://doi.org/10.14311/AP.2023.63.0065

Keywords:

double pipe heat exchanger, heat transfer, numerical analysis, rectangular cavity

Abstract

An investigation on enhancement of heat transfer is carried out for a double pipe heat exchanger in which the outer wall of the inner pipe is provided with circumferential labyrinth passages. Rectangular and triangular cavities with fixed labyrinth tooth thickness, height, and pitch are considered and the effect of added labyrinth structures on the heat transfer characteristics is discussed. A two-dimensional steady numerical simulation is carried out using ANSYS-FLUENT software. The flow Reynolds number equals to 20 000 and 43 000 for the hot and cold fluids, respectively, while other fluid properties are constant. From the numerical analysis carried out in this work, it is identified that the added labyrinth passages in the heat exchange surface improve the heat transfer rate and can reduce the length of the heat exchanger. Numerical predictions agree well with the results obtained from the experiment conducted.

Downloads

Download data is not yet available.

References

A. Lemouedda, A. Schmid, E. Franz, et al. Numerical investigations for the optimization of serrated finned-tube heat exchangers. Applied Thermal Engineering 31(8-9):1393–1401, 2011. https://doi.org/10.1016/j.applthermaleng.2010.12.035

J. M. Gorman, K. R. Krautbauer, E. M. Sparrow. Thermal and fluid flow first-principles numerical design of an enhanced double pipe heat exchanger. Applied Thermal Engineering 107:194–206, 2016. https://doi.org/10.1016/j.applthermaleng.2016.06.134

L. Duan, X. Ling, H. Peng. Flow and heat transfer characteristics of a double-tube structure internal finned tube with blossom shape internal fins. Applied Thermal Engineering 128:1102–1115, 2018. https://doi.org/10.1016/j.applthermaleng.2017.09.026

L. Zhang, H. Guo, J. Wu, W. Du. Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators. Heat and Mass Transfer 48:1113–1124, 2012. https://doi.org/10.1007/s00231-011-0959-5

R. Bhadouriya, A. Agrawal, S. Prabhu. Experimental and numerical study of fluid flow and heat transfer in an annulus of inner twisted square duct and outer circular pipe. International Journal of Thermal Sciences 94:96–109, 2015. https://doi.org/10.1016/j.ijthermalsci.2015.02.019

D. Majidi, H. Alighardashi, F. Farhadi. Experimental studies of heat transfer of air in a double-pipe helical heat exchanger. Applied Thermal Engineering 133:276–282, 2018. https://doi.org/10.1016/j.applthermaleng.2018.01.057

W.-L. Chen, W.-C. Dung. Numerical study on heat transfer characteristics of double tube heat exchangers with alternating horizontal or vertical oval cross section pipes as inner tubes. Energy Conversion and Management 49(6):1574–1583, 2008. https://doi.org/10.1016/j.enconman.2007.12.007

X. Tang, X. Dai, D. Zhu. Experimental and numerical investigation of convective heat transfer and fluid flow in twisted spiral tube. International Journal of Heat and Mass Transfer 90:523–541, 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.068

W. El-Maghlany, E. Eid, M. Teamah, I. Shahrour. Experimental study for double pipe heat exchanger with rotating inner pipe. International journal of advanced scientific and technical research 4(2):507–527, 2012.

E. Ozden, I. Tari. Shell side CFD analysis of a small shell-and-tube heat exchanger. Energy Conversion and Management 51(5):1004–1014, 2010. https://doi.org/10.1016/j.enconman.2009.12.003

A. K. Agrawal, S. Sengupta. Laminar fluid flow and heat transfer in an annulus with an externally enhanced inner tube. International Journal of Heat and Fluid Flow 14(1):54–63, 1993. https://doi.org/10.1016/0142-727X(93)90040-T

J. Taborek. Double-pipe and multitube heat exchangers with plain and longitudinal finned tubes. Heat Transfer Engineering 18(2):34–45, 1997. https://doi.org/10.1080/01457639708939894

R. Raj, N. S. Lakshman, Y. Mukkamala. Single phase flow heat transfer and pressure drop measurements in doubly enhanced tubes. International Journal of Thermal Sciences 88:215–227, 2015. https://doi.org/10.1016/j.ijthermalsci.2014.10.004

S. P. Asok, K. Sankaranarayanasamy, T. Sundararajan, et al. Pressure drop characteristics of water flow through static annular and triangular cavity labyrinth seals. Engineering Applications of Computational Fluid Mechanics 2(4):482–495, 2008. https://doi.org/10.1080/19942060.2008.11015246

S. Eiamsa-ard, S. Pethkool, C. Thianpong, P. Promvonge. Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts. International Communications in Heat and Mass Transfer 35(2):120–129, 2008. https://doi.org/10.1016/j.icheatmasstransfer.2007.07.003

M. M. Aslam Bhutta, N. Hayat, M. H. Bashir, et al. CFD applications in various heat exchangers design: A review. Applied Thermal Engineering 32:1–12, 2012. https://doi.org/10.1016/j.applthermaleng.2011.09.001

C. V. M. Braga, F. E. M. Saboya. Turbulent heat transfer, pressure drop and fin efficiency in annular regions with continuous longitudinal rectangular fins. Experimental Thermal and Fluid Science 20(2):55–65, 1999. https://doi.org/10.1016/S0894-1777(99)00026-6

L. Sun, C.-L. Zhang. Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology. International Journal of Thermal Sciences 75:45–53, 2014. https://doi.org/10.1016/j.ijthermalsci.2013.07.021

H. Huisseune, S. De Schampheleire, B. Ameel, M. De Paepe. Comparison of metal foam heat exchangers to a finned heat exchanger for low reynolds number applications. International Journal of Heat and Mass Transfer 89:1–9, 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.013

M. I. Kim, Y. Lee, B.-W. Kim, et al. CFD modeling of shell-and-tube heat exchanger header for uniform distribution among tubes. Korean Journal of Chemical Engineering 26:359–363, 2009. https://doi.org/10.1007/s11814-009-0060-7

H. Nemati, M. A. Moghimi. Numerical study of flow over annular-finned tube heat exchangers by different turbulent models. CFD Letters 6(3):101–112, 2014.

T. J. Rennie, V. G. S. Raghavan. Experimental studies of a double-pipe helical heat exchanger. Experimental Thermal and Fluid Science 29(8):919–924, 2005. https://doi.org/10.1016/j.expthermflusci.2005.02.001

T. Maré, N. Galanis, I. Voicu, et al. Experimental and numerical study of mixed convection with flow reversal in coaxial double-duct heat exchangers. Experimental Thermal and Fluid Science 32(5):1096–1104, 2008. https://doi.org/10.1016/j.expthermflusci.2008.01.002

S. Freund, S. Kabelac. Investigation of local heat transfer coefficients in plate heat exchangers with temperature oscillation IR thermography and CFD. International Journal of Heat and Mass Transfer 53(19-20):3764–3781, 2010. https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.027

Downloads

Published

2023-03-02

How to Cite

Vijayaragavan, B., Asok, S. P., & Shakthi Ganesh, C. R. (2023). Heat transfer characteristics of double pipe heat exchanger having externally enhanced inner pipe. Acta Polytechnica, 63(1), 65–74. https://doi.org/10.14311/AP.2023.63.0065

Issue

Section

Articles