Multidimensional mobile mapping and integrated approach for the digitalisation of underground transport infrastructure

Authors

  • Federico Foria ETS S.r.l., Via Appia Nuova 59, 00183 Rome, Italy
  • Mario Calicchio ETS S.r.l., Via Appia Nuova 59, 00183 Rome, Italy
  • Laura Moretti Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering, Via Eudossiana 18, 00184 Rome, Italy
  • Giuseppe Loprencipe Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering, Via Eudossiana 18, 00184 Rome, Italy https://orcid.org/0000-0003-1003-8849

DOI:

https://doi.org/10.14311/AP.2023.63.0111

Keywords:

MIRET, ARCHITA, mobile mapping, tunnel defects, railway tunnels

Abstract

The tunnel industry has started focusing on the maintenance and management challenges of an existing infrastructure. It is an urgent matter in industrialised countries, where the stakeholders’ attention is increasing at a fast pace considering the incidents and the disruptions caused by improper monitoring and maintenance. This paper presents an innovative methodology to survey and inspect existing railway tunnels through multi-dimensional mobile mapping systems. The proposed approach belongs to the digital strategies for infrastructure maintenance. An integrated multidimensional survey system (ARCHITA) allows for collecting information necessary for the diagnostics of a structure with non-destructive tests. Linear cameras, thermographic cameras, and ground-penetrating radars acquire data to be digitalised and manipulated in different IT environments. The results, in terms of the collected data on structural defects, allow for a new approach for the Management and Identification of the Risk for Existing Tunnels (MIRET). The innovative approach aims at a smart integration of information and models for the Facility Management of the transport system. The workflow for the digitalisation and diagnosis from mobile mapping data has been implemented on two 40km-long metro tunnels.

Downloads

Download data is not yet available.

References

J. Rodrigue, C. Comtois, B. Slack. The geography of transport systems. Routledge, 2006.

R. Schwartz, I. Gregory, T. Thévenin. Spatial history: Railways, uneven development, and population change in France and Great Britain, 1850-1914. Journal of Interdisciplinary History 42(1):53–88, 2011. https://doi.org/10.1162/JINH_a_00205

S. Jovanovic, A. Zoeteman. Modern condition-based railway infrastructure asset management. In 1st International Conference on Road and Rail Infrastructure, pp. 801–808. 2010.

E. Quatrini, F. Costantino, G. Di Gravio, R. Patriarca. Condition-based maintenance – an extensive literature review. Machines 8(2):31, 2020. https://doi.org/10.3390/machines8020031

M. Mili, F. Chille, C. Thuad. Comparison of international repair works practices in railway tunnels [In French; État de l’art des travaux de réparation en tunnels ferroviaires exploités en Europe]. In 16th International Congress AFTES 2021. 2021. #117, https://livebyglevents.key4register.com/key4register/AbstractList.aspx?e=30&preview=1&aig=-1&ai=4876.

P. Di Mascio, G. Loprencipe, L. Moretti. Competition in rail transport: Methodology to evaluate economic impact of new trains on track. In 3rd International Conference on Transportation Infrastructure, ICTI 2014 – Sustainability, Eco-Efficiency and Conservation in Transportation Infrastructure Asset Management, pp. 669–675. 2014.

J. Richards. Inspection, maintenance and repair of tunnels: International lessons and practice. Tunnelling and Underground Space Technology 13(4):369–375, 1998. https://doi.org/10.1016/S0886-7798(98)00079-0

T. Tichý, J. Brož, Z. Bělinová, R. Pirník. Analysis of predictive maintenance for tunnel systems. Sustainability 13(7):3977, 2021. https://doi.org/10.3390/su13073977

S. Biancardo, M. Intignano, N. Viscione, et al. Procedural modeling-based BIM approach for railway design. Journal of Advanced Transportation 2021(17):8839362, 2021. https://doi.org/10.1155/2021/8839362

A. Badshah, S. Ullah, D. Shahzad. Vision based tunnel inspection using non-rigid registration. In Twelfth International Conference on Quality Control by Artificial Vision 2015, vol. 9534, p. 95340J. 2015. https://doi.org/10.1117/12.2182932

L. Attard, C. J. Debono, G. Valentino, M. Di Castro. Vision-based change detection for inspection of tunnel liners. Automation in Construction 91:142–154, 2018. https://doi.org/10.1016/j.autcon.2018.03.020

G. Loprencipe, L. Moretti, T. Pestillo, R. Ferraro. Railway freight transport and logistics: Methods for relief, algorithms for verification and proposals for the adjustment of tunnel inner surfaces. Sustainability 10(9):3145, 2018. https://doi.org/10.3390/su10093145

P. Zoccali, G. Loprencipe, R. C. Lupascu. Acceleration measurements inside vehicles: Passengers’ comfort mapping on railways. Measurement 129:489–498, 2018. https://doi.org/10.1016/j.measurement.2018.07.079

J. C. Cheng, Q. Lu, Y. Deng. Analytical review and evaluation of civil information modeling. Automation in Construction 67:31–47, 2016. https://doi.org/10.1016/j.autcon.2016.02.006

A. Justo, M. Soilán, A. Sánchez-Rodríguez, B. Riveiro. Scan-to-BIM for the infrastructure domain: Generation of IFC-compliant models of road infrastructure assets and semantics using 3D point cloud data. Automation in Construction 127:103703, 2021. https://doi.org/10.1016/j.autcon.2021.103703

Y. Ghassoun, M. Gerke, Y. Khedar, et al. Implementation and validation of a high accuracy UAV-photogrammetry based rail track inspection system. Remote Sensing 13(3):384, 2021. https://doi.org/10.3390/rs13030384

A. Thaduri, D. Galar, U. Kumar. Railway assets: A potential domain for big data analytics. Procedia Computer Science 53:457–467, 2015. https://doi.org/10.1016/j.procs.2015.07.323

N. Davari, B. Veloso, G. Assis Costa, et al. A survey on data-driven predictive maintenance for the railway industry. Sensors 21(17):5739, 2021. https://doi.org/10.3390/s21175739

Y. Cheng, W. Qiu, D. Duan. Automatic creation of as-is building information model from single-track railway tunnel point clouds. Automation in Construction 106:102911, 2019. https://doi.org/10.1016/j.autcon.2019.102911

M. Bensalah, A. Elouadi, H. Mharzi. Overview: The opportunity of BIM in railway. Smart and Sustainable Built Environment 8(2):103–116, 2019. https://doi.org/10.1108/SASBE-11-2017-0060

F. Foria, R. Ferraro, E. Peticchia, et al. Modélisation des défauts et maintenance des tunnels existants avec une approche novatrice (MIRET): L’étude de cas de la ligne de chemin de fer gênes – vintimille et du métro de rome. In 26th International Congress AFTES 2021, pp. 1–10. 2021.

F. Foria, G. Avancini, R. Ferraro, et al. ARCHITA: An innovative multidimensional mobile mapping system for tunnels and infrastructures. MATEC Web of Conferences 295:01005, 2019. https://doi.org/10.1051/matecconf/201929501005

D. Aggelis, E. Kordatos, M. Strantza, et al. NDT approach for characterization of subsurface cracks in concrete. Construction and Building Materials 25(7):3089–3097, 2011. https://doi.org/10.1016/j.conbuildmat.2010.12.045

G. Sirca Jr., H. Adeli. Infrared thermography for detecting defects in concrete structures. Journal of Civil Engineering and Management 24(7):508–515, 2018. https://doi.org/10.3846/jcem.2018.6186

Software infinity, 2022. [2022-07-21], https://leica-geosystems.com/en-gb/products/gnss-systems/software/leica-infinity.

Y. Ren, J. Huang, Z. Hong, et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks. Construction and Building Materials 234:117367, 2020. https://doi.org/10.1016/j.conbuildmat.2019.117367

Python, 2022. [2022-07-21], https://www.python.org/.

K. Nielsen. Software Development with C++. Elsevier, 1994. https://doi.org/10.1016/C2013-0-11240-8

Tensorflow, 2022. [2022-07-21], https://www.tensorflow.org/.

F. Foria, G. Miceli, A. Tamburini, et al. Application of spatial multi-criteria analysis (SMCA) to assess rockfall hazard and plan mitigation strategies along long infrastructures. IOP Conference Series: Earth and Environmental Science 833:012074, 2021. https://doi.org/10.1088/1755-1315/833/1/012074

3DReshaper accueil | 3DReshaper available, 2022. [2022-07-09], https://www.3dreshaper.com/fr/.

Software Trimble GEDO Office, 2022. [2022-07-21], https://www.trimble-italia.com/prodotti/software/trimble-gedo-office.

L. Wright, S. Davidson. How to tell the difference between a model and a digital twin. Advanced Modeling and Simulation in Engineering Sciences 7:13, 2020. https://doi.org/10.1186/s40323-020-00147-4

Solibri, 2022. [2022-07-09], https://www.harpaceas.it/solibri.

Z. Li, J. Huang. Study on the use of Q-R codes as landmarks for indoor positioning: Preliminary results. In 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 1270–1276. 2018. https://doi.org/10.1109/PLANS.2018.8373516

H. Gang, J. Pyun. A smartphone indoor positioning system using hybrid localization technology. Energies 12(19):3702, 2019. https://doi.org/10.3390/en12193702

G. Cantisani, J. D. C. Panesso, G. Del Serrone, et al. Re-design of a road node with 7D BIM: Geometrical, environmental and microsimulation approaches to implement a benefit-cost analysis between alternatives. Automation in Construction 135:104133, 2022. https://doi.org/10.1016/j.autcon.2022.104133

M. Leone, A. D’Andrea, G. Loprencipe, et al. Building information modeling (BIM): Prospects for the development of railway infrastructure industry. In Proceedings of AIIT International Congress TIS Rome 2017, pp. 547–553. 2017. https://doi.org/10.1201/9781315281896-72

Downloads

Published

2023-05-02

How to Cite

Foria, F., Calicchio, M., Moretti, L., & Loprencipe, G. (2023). Multidimensional mobile mapping and integrated approach for the digitalisation of underground transport infrastructure. Acta Polytechnica, 63(2), 111–122. https://doi.org/10.14311/AP.2023.63.0111

Issue

Section

Articles