Exact solutions for time-dependent complex symmetric potential well

Authors

  • Boubakeur Khantoul University of Jijel, Department of Physics, Laboratory of Theoretical Physics, BP 98 Ouled Aissa, 18000 Jijel, Algeria; University of Constantine 3 – Salah Boubnider University, Department of Process Engineering, BP B72 Ali Mendjeli, 25000 Constantine, Algeria https://orcid.org/0000-0001-9012-4864
  • Abdelhafid Bounames University of Jijel, Department of Physics, Laboratory of Theoretical Physics, BP 98 Ouled Aissa, 18000 Jijel, Algeria https://orcid.org/0000-0002-5998-2710

DOI:

https://doi.org/10.14311/AP.2023.63.0132

Keywords:

non-Hermitian Hamiltonian, time-dependent Hamiltonian, pseudo-invariant method, PT-symmetry, pseudo-Hermiticity

Abstract

Using the pseudo-invariant operator method, we investigate the model of a particle with a time-dependent mass in a complex time-dependent symmetric potential well V (x, t) = if (t) |x|. The problem is exactly solvable and the analytic expressions of the Schrödinger wavefunctions are given in terms of the Airy function. Indeed, with an appropriate choice of the time-dependent metric operators and the unitary transformations, for each region, the two corresponding pseudo-Hermitian invariants transform into a well-known time-independent Hermitian invariant which is the Hamiltonian of a particle confined in a symmetric linear potential well. The eigenfunctions of the last invariant are the Airy functions. Then, the phases obtained are real for both regions and the general solution to the problem is deduced.

Downloads

Download data is not yet available.

References

C. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters 80(24):5243–5246, 1998. https://doi.org/10.1103/PhysRevLett.80.5243

F. Bagarello, J. Gazeau, F. Szaraniec, M. Znojil. Non-Self adjoint Operators in Quantum Physics: Mathematical Aspects. John Wiley, 2015.

C. Bender. PT symmetry: In quantum and classical physics. World Scientific, 2019. [4] A. Mostafazadeh. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. Journal of Mathematical Physics 43(1):205–214, 2002. https://doi.org/10.1063/1.1418246

A. Mostafazadeh. Pseudo-Hermiticity versus PT-symmetry II: A complete characterization of non-Hermitian Hamiltonians with a real spectrum. Journal of Mathematical Physics 43(5):2814, 2002. https://doi.org/10.1063/1.1461427

A. Mostafazadeh. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries. Journal of Mathematical Physics 43(8):3944–3951, 2002. https://doi.org/10.1063/1.1489072

H. Choutri, M. Maamache, S. Menouar. Geometric phase for a periodic non-Hermitian Hamiltonian. Journal-Korean Physical Society 40(2):358–360, 2002.

C. Yuce. Time-dependent PT symmetric problems. Physics Letters A 336(4-5):290–294, 2005. https://doi.org/10.1016/j.physleta.2004.12.043

A. Dutra, M. Hott, V. dos Santos. Time-dependent non-Hermitian Hamiltonians with real energies. Europhysics Letters (EPL) 71(2):166–171, 2005. https://doi.org/10.1209/epl/i2005-10073-7

C. Faria, A. Fring. Time evolution of non-Hermitian Hamiltonian systems. Journal of Physics A: Mathematical and General 39(29):9269–9289, 2006. https://doi.org/10.1088/0305-4470/39/29/018

A. Mostafazadeh. Time-dependent pseudo-Hermitian Hamiltonians defining a unitary quantum system and uniqueness of the metric operator. Physics Letters B 650(2-3):208–212, 2007. https://doi.org/10.1016/j.physletb.2007.04.064

M. Znojil. Time-dependent quasi-Hermitian Hamiltonians and the unitarity of quantum evolution, 2007. arXiv:0710.5653

M. Znojil. Time-dependent version of crypto-Hermitian quantum theory. Physical Review D 78(8):085003, 2008. https://doi.org/10.1103/PhysRevD.78.085003

J. Gong, Q. Wang. Time-dependent PT-symmetric quantum mechanics. Journal of Physics A: Mathematical and Theoretical 46(48):485302, 2013. https://doi.org/10.1088/1751-8113/46/48/485302

A. Fring, M. Moussa. Unitary quantum evolution for time-dependent quasi-hermitian systems with nonobservable Hamiltonians. Physical Review A 93(4):042114, 2016. https://doi.org/10.1103/PhysRevA.93.042114

A. Fring, M. Moussa. Non-Hermitian Swanson model with a time-dependent metric. Physical Review A 94(4):042128, 2016. https://doi.org/10.1103/PhysRevA.94.042128

B. Khantoul, A. Bounames, M. Maamache. On the invariant method for the time-dependent non-Hermitian Hamiltonians. The European Physical Journal Plus 132(6):258, 2017. https://doi.org/10.1140/epjp/i2017-11524-7

M. Maamache, O. Djeghiour, N. Mana, W. Koussa. Pseudo-invariants theory and real phases for systems with non-Hermitian time-dependent Hamiltonians. The European Physical Journal Plus 132(9):383, 2017. https://doi.org/10.1140/epjp/i2017-11678-2

M. Maamache. Non-unitary transformation of quantum time-dependent non-Hermitian systems. Acta Polytechnica 57(6):424, 2017. https://doi.org/10.14311/AP.2017.57.0424

B. Bagchi. Evolution operator for time-dependent non-Hermitian Hamiltonians. Letters in High Energy Physics 1(3):4–8, 2018. https://doi.org/10.31526/LHEP.3.2018.02

B. Ramos, I. Pedrosa, A. Lopes de Lima. Lewis and Riesenfeld approach to time-dependent non-Hermitian Hamiltonians having PT symmetry. The European Physical Journal Plus 133(11):449, 2018. https://doi.org/10.1140/epjp/i2018-12251-3

W. Koussa, N. Mana, O. Djeghiour, M. Maamache. The pseudo Hermitian invariant operator and time-dependent non-Hermitian Hamiltonian exhibiting a SU(1,1) and SU(2) dynamical symmetry. Journal of Mathematical Physics 59(7):072103, 2018. https://doi.org/10.1063/1.5041718

H. Wang, L. Lang, Y. Chong. Non-Hermitian dynamics of slowly varying Hamiltonians. Physical Review A 98(1):012119, 2018. https://doi.org/10.1103/PhysRevA.98.012119

S. Cheniti, W. Koussa, A. Medjber, M. Maamache. Adiabatic theorem and generalized geometrical phase in the case of pseudo-Hermitian systems. Journal of Physics A: Mathematical and Theoretical 53(40):405302, 2020. https://doi.org/10.1088/1751-8121/abad79

R. Bishop, M. Znojil. Non-Hermitian coupled cluster method for non-stationary systems and its interaction-picture reinterpretation. The European Physical Journal Plus 135(4):374, 2020. https://doi.org/10.1140/epjp/s13360-020-00374-z

M. Zenad, F. Ighezou, O. Cherbal, M. Maamache. Ladder invariants and coherent states for timedependent non-Hermitian Hamiltonians. International Journal of Theoretical Physics 59(4):1214–1226, 2020. https://doi.org/10.1007/s10773-020-04401-8

J. Choi. Perturbation theory for time-dependent quantum systems involving complex potentials. Frontiers in Physics 8, 2020. https://doi.org/10.3389/fphy.2020.00189

F. Luiz, M. de Ponte, M. Moussa. Unitarity of the time-evolution and observability of non-Hermitian Hamiltonians for time-dependent Dyson maps. Physica Scripta 95(6):065211, 2020. https://doi.org/10.1088/1402-4896/ab80e5

A. Mostafazadeh. Time-dependent pseudo-Hermitian Hamiltonians and a hidden geometric aspect of quantum mechanics. Entropy 22(4):471, 2020. https://doi.org/10.3390/e22040471

L. Alves da Silva, R. Dourado, M. Moussa. Beyond PT-symmetry: Towards a symmetry-metric relation for time-dependent non-Hermitian Hamiltonians. SciPost Physics Core 5(1):012, 2022. https://doi.org/10.21468/SciPostPhysCore.5.1.012

Y. Gu, X. Bai, X. Hao, J. Liang. PT-symmetric non-Hermitian Hamiltonian and invariant operator in periodically driven SU(1,1) system. Results in Physics 38:105561, 2022. https://doi.org/10.1016/j.rinp.2022.105561

P. Ermakov. Second-order differential equations: Conditions of complete integrability. Applicable Analysis and Discrete Mathematics 2(2):123–145, 2008. https://doi.org/10.2298/AADM0802123E

D. Schuch. Quantum theory from a nonlinear perspective. Springer, 2018.

A. Fring, T. Frith. Exact analytical solutions for time-dependent Hermitian Hamiltonian systems from static unobservable non-Hermitian Hamiltonians. Physical Review A 95(1):010102, 2017. https://doi.org/10.1103/PhysRevA.95.010102

W. Koussa, M. Maamache. Pseudo-invariant approach for a particle in a complex time-dependent linear potential. International Journal of Theoretical Physics 59(5):1490–1503, 2020. https://doi.org/10.1007/s10773-020-04417-0

A. Fring, R. Tenney. Exactly solvable time-dependent non-Hermitian quantum systems from point transformations. Physics Letters A 410:127548, 2021. https://doi.org/10.1016/j.physleta.2021.127548

K. Zelaya, O. Rosas-Ortiz. Exact solutions for time-dependent non-Hermitian oscillators: Classical and quantum pictures. Quantum Reports 3(3):458–472, 2021. https://doi.org/10.3390/quantum3030030

M. Huang, R. Lee, Q. Wang, et al. Solvable dilation model of time-dependent PT-symmetric systems. Physical Review A 105(6):062205, 2022. https://doi.org/10.1103/PhysRevA.105.062205

F. Kecita, A. Bounames, M. Maamache. A real expectation value of the time-dependent non-Hermitian Hamiltonians. Physica Scripta 96(12):125265, 2021. https://doi.org/10.1088/1402-4896/ac3dbd

B. Villegas-Martinez, H. Moya-Cessa, F. Soto-Eguibar. Exact solution for the time dependent non-Hermitian generalized Swanson oscillator, 2022. arXiv:2205.05741

P. Caldirola. Forze non conservative nella meccanica quantistica. Il Nuovo Cimento 18(9):393–400, 1941. https://doi.org/10.1007/BF02960144

E. Kanai. On the quantization of the dissipative systems. Progress of Theoretical Physics 3(4):440–442, 1948. https://doi.org/10.1143/ptp/3.4.440

M. Abdalla. Canonical treatment of harmonic oscillator with variable mass. Physical Review A 33(5):2870–2876, 1986. https://doi.org/10.1103/PhysRevA.33.2870

I. Ramos-Prieto, A. Espinosa-Zuñiga, M. Fernández-Guasti, H. Moya-Cessa. Quantum harmonic oscillator with time-dependent mass. Modern Physics Letters B 32(20):1850235, 2018. https://doi.org/10.1142/S0217984918502354

K. Zelaya. Time-dependent mass oscillators: Constants of motion and semiclasical states. Acta Polytechnica 62(1):211–221, 2022. https://doi.org/10.14311/AP.2022.62.0211

H. Lewis, W. Riesenfeld. An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. Journal of Mathematical Physics 10(8):1458–1473, 1969. https://doi.org/10.1063/1.1664991

J. Schwinger. Symbolism of Atomic Measurements. Springer, 2001.

O. Vallée, M. Soares. Airy functions and applications to physics. Imperial College Press, 2004.

F. Olver, D. Lozier, R. Boisvert, C. Clark. NIST handbook of mathematical functions, Chap. 9. Cambridge University Press, 2010. http://dlmf.nist.gov/9

Downloads

Published

2023-05-02

How to Cite

Khantoul, B., & Bounames, A. (2023). Exact solutions for time-dependent complex symmetric potential well. Acta Polytechnica, 63(2), 132–139. https://doi.org/10.14311/AP.2023.63.0132

Issue

Section

Articles