Parametric optimisation of friction stir welding on aluminium alloy (EN AW-1100) plates

Authors

  • Muhammad Umer Farooq Awan Pakistan Institute of Engineering and Applied Sciences, Department of Nuclear Engineering, Nilore, 45650, Pakistan
  • Mahmood Khan Norwegian University of Science and Technology, Faculty of Natural Sciences, Department of Materials Science and Engineering, Trondheim, 7491, Norway; Institute of Space Technology, Department of Materials Science and Engineering, Islamabad, 44000, Pakistan
  • Khalid Waheed Pakistan Institute of Engineering and Applied Sciences, Department of Nuclear Engineering, Nilore, 45650, Pakistan
  • Zafar Iqbal Pakistan Institute of Engineering and Applied Sciences, Department of Nuclear Engineering, Nilore, 45650, Pakistan
  • Abdul Rehman Pakistan Institute of Engineering and Applied Sciences, Department of Metallurgy and Materials Engineering, Nilore, 45650, Pakistan; Tsinghua University, School of Materials Science and Engineering, Key Laboratory of Advanced Materials, Beijing, 100084, China
  • Fahad Ali Pakistan Institute of Engineering and Applied Sciences, Department of Nuclear Engineering, Nilore, 45650, Pakistan
  • Muhammad Shahzad Tsinghua University, School of Materials Science and Engineering, Key Laboratory of Advanced Materials, Beijing, 100084, China
  • Muhammad Abdul Basit Saim Institute of Space Technology, Department of Materials Science and Engineering, Islamabad, 44000, Pakistan
  • Shahid Akhtar Hydro Aluminium AS, Research and Technology Development, Sunndalsøra, 6600, Norway
  • Ragnhild Elizabeth Aune Norwegian University of Science and Technology, Faculty of Natural Sciences, Department of Materials Science and Engineering, Trondheim, 7491, Norway

DOI:

https://doi.org/10.14311/AP.2023.63.0075

Keywords:

friction stir welding, parametric optimisation, mechanical properties, Taguchi method, ANOVA, aluminium alloys, EN AW-1100 alloy

Abstract

Friction stir welding is a solid-state welding process used extensively for aluminium alloys. EN AW-1100 alloy is mostly used for its exceptional corrosion resistance, high ductility, high thermal and electrical conductivities, and cost-effectiveness. This study is focused on the optimisation of friction stir welding parameters to achieve enhanced mechanical properties of 5mm thick EN AW-1100 alloy plates welded with a single pass, using Taguchi L9 orthogonal array and ANOVA analysis. Experimental results revealed that maximum tensile strength of 79 MPa and percentage elongation of 38.87 % were achieved. The maximum Vickers hardness achieved in the stir zone was 34.15. These results were used for optimisation using Minitab and it was determined that 2000 RPM, 30 mm·min−1 traverse speed and square probe profile came out to be the best parameters for maximum tensile strength. 4000 RPM, 30 mm·min−1 traverse speed and square probe geometry were the best parameters for maximum hardness in the stir zone. ANOVA analysis showed that the most significant parameter for tensile strength was traverse speed. None of the considered parameters were influencing the hardness value in the stir zone at a 95 % confidence level.

Downloads

Download data is not yet available.

References

M. Khan, R. Ud-Din, W. H. Syed, et al. Spark plasma sintering of boron carbide reinforced aluminum alloy (Al6061) matrix composites. In 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 35–41. 2019. https://doi.org/10.1109/IBCAST.2019.8667164

M. Khan, M. Zulfaqar, F. Ali, T. Subhani. Microstructural and mechanical characterization of hybrid aluminum matrix composite containing boron carbide and Al-Cu-Fe quasicrystals. Metals and Materials International 23(4):813–822, 2017. https://doi.org/10.1007/s12540-017-6619-7

M. Khan, W. H. Syed, S. Akhtar, R. E. Aune. Friction stir processing (FSP) of multiwall carbon nanotubes and boron carbide reinforced aluminum alloy (Al 5083) composites. In Y. Hovanski, R. Mishra, Y. Sato, et al. (eds.), Friction Stir Welding and Processing X, pp. 217–232. Springer International Publishing, Cham, 2019. https://doi.org/10.1007/978-3-030-05752-7_21

C. Ng, S. Yahaya, A. Majid. Reviews on aluminum alloy series and its applications. Academia Journal of Scientific Research 5(12):708–716, 2017. https://doi.org/10.15413/ajsr.2017.0724

S. M. Najm, I. Paniti, T. Trzepieciński, et al. Parametric effects of single point incremental forming on hardness of AA1100 aluminium alloy sheets. Materials 14(23):7263, 2021. https://doi.org/10.3390/ma14237263

M. Khan, R. Ud-Din, A. Wadood, et al. Spark plasma sintering of graphene nanoplatelets reinforced aluminium 6061 alloy composites. In A. Tomsett (ed.), Light Metals 2020, pp. 301–311. Springer International Publishing, Cham, 2020. https://doi.org/10.1007/978-3-030-36408-3_44

M. Khan, R. Ud-Din, A. Wadood, et al. Physical and mechanical properties of graphene nanoplatelet-reinforced Al6061-T6 composites processed by spark plasma sintering. JOM 72(6):2295–2304, 2018. https://doi.org/10.1007/s11837-020-04139-y

M. Khan, M. Shahzad, M. A. Basit, et al. A comparative study of carbon nanotubes and graphene nanoplatelets on structure-property relationship of aluminium matrix composites synthesized by spark plasma sintering. In T. S. Srivatsan, P. K. Rohatgi, S. Hunyadi Murph (eds.), Metal-Matrix Composites, pp. 21–40. Springer International Publishing, Cham, 2022. https://doi.org/10.1007/978-3-030-92567-3_2

M. Khan, R. ud Din, M. A. Basit, et al. Effects of graphene nanoplatelets and boron carbide on microstructure and mechanical behaviour of aluminium alloy (Al6061) after friction stir welding. Advances in Materials and Processing Technologies 8(3):3148–3164, 2022. https://doi.org/10.1080/2374068X.2021.1945303

G. İpekoğlu, G. Çam. Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance. IOP Conference Series: Materials Science and Engineering 629(1):012–007, 2019. https://doi.org/10.1088/1757-899X/629/1/012007

G. Çam, M. Koçak. Microstructural and mechanical characterization of electron beam welded Al-alloy 7020. Journal of Materials Science 42(17):7154–7161, 2007. https://doi.org/10.1007/s10853-007-1604-z

G. Çam, V. Ventzke, J. F. Dos Santos, et al. Characterisation of electron beam welded aluminium alloys. Science and Technology of Welding and Joining 4(5):317–323, 1999. https://doi.org/10.1179/136217199101537941

W. Thomas. Friction stir butt welding, international patent application No. PCT/GB92, 1991. GB Patent Application No. 9125978.8.

M. Khan, A. Rehman, T. Aziz, et al. Cold formability of friction stir processed aluminum composites containing carbon nanotubes and boron carbide particles. Materials Science and Engineering: A 701:382–388, 2017. https://doi.org/10.1016/j.msea.2017.05.121

G. Çam, V. Javaheri, A. Heidarzadeh. Advances in FSW and FSSW of dissimilar Al-alloy plates. Journal of Adhesion Science and Technology 37(2):162–194, 2023. https://doi.org/10.1080/01694243.2022.2028073

T. Küçükömeroğlu, S. M. Aktarer, G. Çam. Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel. IOP Conference Series: Materials Science and Engineering 629(1):012–010, 2019. https://doi.org/10.1088/1757-899X/629/1/012010

G. Çam, G. İpekoğlu, H. T. Serindağ. Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints. Science and Technology of Welding and Joining 19(8):715–720, 2014. https://doi.org/10.1179/1362171814Y.0000000247

G. Çam, G. İpekoğlu. Recent developments in joining of aluminum alloys. The International Journal of Advanced Manufacturing Technology 91(5):1851–1866, 2017. https://doi.org/10.1007/s00170-016-9861-0

G. Çam, S. Mistikoglu, M. Pakdil. Microstructural and mechanical characterization of friction stir butt joint welded 63%Cu-37%Zn brass plate. Welding journal 88:225s–232s, 2009.

G. Çam, H. Serindag, A. Çakan, et al. The effect of weld parameters on friction stir welding of brass plates. Materialwissenschaft und Werkstofftechnik 39(06):394–399, 2008. https://doi.org/10.1002/mawe.200800314

T. Küçükömeroğlu, E. Şentürk, L. Kara, et al. Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy. Journal of Materials Engineering and Performance 25(1):320–326, 2016. https://doi.org/10.1007/s11665-015-1838-x

T. Küçükömeroğlu, S. M. Aktarer, G. İpekoğlu, G. Çam. Mechanical properties of friction stir welded St 37 and St 44 steel joints. Materials Testing 60(12):1163–1170, 2018. https://doi.org/doi:10.3139/120.111266

J. Victor Christy, A.-H. Ismail Mourad, M. M. Sherif, B. Shivamurthy. Review of recent trends in friction stir welding process of aluminum alloys and aluminum metal matrix composites. Transactions of Nonferrous Metals Society of China 31(11):3281–3309, 2021. https://doi.org/10.1016/S1003-6326(21)65730-8

M. MohammadiSefat, H. Ghazanfari, C. Blais. Friction stir welding of 5052-H18 aluminum alloy: Modeling and process parameter optimization. Journal of Materials Engineering and Performance 30(3):1838–1850, 2021. https://doi.org/10.1007/s11665-021-05499-5

V. P. Singh, S. K. Patel, B. Kuriachen, S. Suman. Investigation of general welding defects found during friction-stir welding (FSW) of aluminium and its alloys. In M. S. Shunmugam, M. Kanthababu (eds.), Advances in Additive Manufacturing and Joining, pp. 587–595. Springer Singapore, Singapore, 2020. https://doi.org/10.1007/978-981-32-9433-2_51

A. V. U. K. Kandala, D. G. Solomon, J. J. Arulraj. Advantages of Taguchi method compared to response surface methodology for achieving the best surface finish in wire electrical discharge machining (WEDM). Journal of Mechanical Engineering (JMechE) 19(1):185–199, 2022. https://doi.org/10.24191/jmeche.v19i1.19696

B. K. Das, D. N. Jha, S. K. Sahu, et al. Analysis of variance (ANOVA) and design of experiments. In Concept Building in Fisheries Data Analysis, pp. 119–136. Springer Nature Singapore, Singapore, 2023. https://doi.org/10.1007/978-981-19-4411-6_7

A. K. Pandey, V. Narayanan. Investigation of defect formation during friction stir welding of aluminum alloys. AIP Conference Proceedings 2273(1):050030, 2020. https://doi.org/10.1063/5.0024507

N. Dialami, M. Cervera, M. Chiumenti. Defect formation and material flow in friction stir welding. European Journal of Mechanics - A/Solids 80:103912, 2020. https://doi.org/10.1016/j.euromechsol.2019.103912

V. John, R. Pant, S. Aggrawal, P. Agarwal. Parametric analysis and effect of tool on FSW joint of 6082 Al alloy by Taguchi method. International Journal of Mechanical and Production Engineering Research and Development 8(1):105–110, 2018. https://doi.org/10.24247/ijmperdfeb201812

V. Moosabeiki, G. Azimi, M. Ghayoor. Influences of tool pin profile and tool shoulder curvature on the formation of friction stir welding zone in AA6061 aluminium alloy. In Materials and Manufacturing Technologies XIV, vol. 445 of Advanced Materials Research, pp. 789–794. Trans Tech Publications Ltd, 2012. https://doi.org/10.4028/www.scientific.net/AMR.445.789

C. N. Suresha, B. M. Rajaprakash, S. Upadhya. A study of the effect of tool pin profiles on tensile strength of welded joints produced using friction stir welding process. Materials and Manufacturing Processes 26(9):1111–1116, 2011. https://doi.org/10.1080/10426914.2010.532527

K. Elangovan, V. Balasubramanian. Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Materials & Design 29(2):362–373, 2008. https://doi.org/10.1016/j.matdes.2007.01.030

A. Tamadon, A. Baghestani, M. E. Bajgholi. Influence of WC-based pin tool profile on microstructure and mechanical properties of AA1100 FSW welds. Technologies 8(2):34, 2020. https://doi.org/10.3390/technologies8020034

M. Prasad, K. kumar Namala. Process parameters optimization in friction stir welding by ANOVA. Materials Today: Proceedings 5(2, Part 1):4824–4831, 2018. 7th International Conference of Materials Processing and Characterization, March 17-19, 2017. https://doi.org/10.1016/j.matpr.2017.12.057

K. Nakowong, K. Sillapasa. Optimized parameter for butt joint in friction stir welding of semi-solid aluminum alloy 5083 using Taguchi technique. Journal of Manufacturing and Materials Processing 5(3):88, 2021. https://doi.org/10.3390/jmmp5030088

G. Ghangas, S. Singhal. Effect of tool pin profile and dimensions on mechanical properties and microstructure of friction stir welded armor alloy. Materials Research Express 5(6):066555, 2018. https://doi.org/10.1088/2053-1591/aacdb1

Y. Javadi, S. Sadeghi, M. A. Najafabadi. Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding. Materials & Design 55:27–34, 2014. https://doi.org/10.1016/j.matdes.2013.10.021

M. Akbari, P. Asadi. Optimization of microstructural and mechanical properties of brass wire produced by friction stir extrusion using Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235(12):2709–2719, 2021. https://doi.org/10.1177/14644207211032992

P. Ross. Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design. Industrial engineering. McGraw-Hill, 1988.

M. Khan, A. Rehman, T. Aziz, et al. Effect of inter-cavity spacing in friction stir processed al 5083 composites containing carbon nanotubes and boron carbide particles. Journal of Materials Processing Technology 253:72–85, 2018. https://doi.org/10.1016/j.jmatprotec.2017.11.002

L. Dumpala, D. Lokanadham. Low cost friction stir welding of aluminium nanocomposite – a review. Procedia Materials Science 6:1761–1769, 2014. 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014). https://doi.org/10.1016/j.mspro.2014.07.206

E. O. Hall. The deformation and ageing of mild steel: III discussion of results. Proceedings of the Physical Society Section B 64(9):747, 1951. https://doi.org/10.1088/0370-1301/64/9/303

N. J. Petch. The cleavage strength of polycrystals. Journal of the Iron and Steel Institute 174:25–28, 1953.

J. Das, P. S. Robi, M. R. Sankar. Assessment of parameters windows and tool pin profile on mechanical property and microstructural morphology of FSWed AA2014 joints. SN Applied Sciences 2:123, 2019. https://doi.org/10.1007/s42452-019-1895-0

J. Unfried, J. Rodriguez, A. Torres, J. Carrasco. Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy. Dyna (Medellin, Colombia) 84(200):202–208, 2017. https://doi.org/10.15446/dyna.v84n200.55787

Y. Li, D. Sun, W. Gong. Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welded 6082-T6 aluminum alloy. Metals 9(8):894, 2019. https://doi.org/10.3390/met9080894

S. K, K. Jayakumar. Effect of tool pin profile on the mechanical and microstructural properties of dissimilar friction stir welded AA5083-H111 and AA6061-T6 aluminium alloys. Journal of the Chinese Institute of Engineers 45(3):227–236, 2022. https://doi.org/10.1080/02533839.2022.2034054

D. Hao, T. Tra. Effects of friction stir welding parameters on the mechanical properties of AA7075-T6. Archives of Materials Science and Engineering 77:58–64, 2016. https://doi.org/10.5604/18972764.1225594

D. Sethi, U. Acharya, S. Kumar, et al. Effect of tool rotational speed on friction stir welded AA6061-T6 scarf joint configuration. Advanced Composites and Hybrid Materials 5(3):2353–2368, 2022. https://doi.org/10.1007/s42114-022-00434-1

J. Marzbanrad, M. Akbari, P. Asadi, S. Safaee. Characterization of the influence of tool pin profile on microstructural and mechanical properties of friction stir welding. Metallurgical and Materials Transactions B 45(5):1887–1894, 2014. https://doi.org/10.1007/s11663-014-0089-9

M. K. Gupta. Effects of tool profile on mechanical properties of aluminium alloy Al 1120 friction stir welds. Journal of Adhesion Science and Technology 34(18):2000–2010, 2020. https://doi.org/10.1080/01694243.2020.1749448

Z. Ma, Q. Li, L. Ma, et al. Process parameters optimization of friction stir welding of 6005A-T6 aluminum alloy using Taguchi technique. Transactions of the Indian Institute of Metals 72(7):1721–1731, 2019. https://doi.org/10.1007/s12666-019-01639-7

K. Elangovan, V. Balasubramanian. Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Materials Science and Engineering: A 459(1):7–18, 2007. https://doi.org/10.1016/j.msea.2006.12.124

M. H. Shojaeefard, M. Akbari, A. Khalkhali, et al. Optimization of microstructural and mechanical properties of friction stir welding using the cellular automaton and Taguchi method. Materials & Design 64:660–666, 2014. https://doi.org/10.1016/j.matdes.2014.08.014

K. Elangovan, V. Balasubramanian. Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. Journal of Materials Processing Technology 200(1):163–175, 2008. https://doi.org/10.1016/j.jmatprotec.2007.09.019

Downloads

Published

2023-05-02

How to Cite

Awan, M. U. F., Khan, M., Waheed, K., Iqbal, Z., Rehman, A., Ali, F., Shahzad, M., Saim, M. A. B., Akhtar, S., & Aune, R. E. (2023). Parametric optimisation of friction stir welding on aluminium alloy (EN AW-1100) plates. Acta Polytechnica, 63(2), 75–88. https://doi.org/10.14311/AP.2023.63.0075

Issue

Section

Articles