Mechanical and physical properties of cement mixtures for 3D processing
DOI:
https://doi.org/10.14311/AP.2023.63.0199Keywords:
3D processing, robotic sculpturing, cementitious composite, printing technologyAbstract
In this paper, information about cementitious composite materials for further 3D processing is discussed and supplemented. Many of the research in this area focuses primarily on cement composites suitable for 3D printing. Nevertheless, 3D printing is not the only robotic processing technique. Another such a technology is modelling with the help of a robotic arm, which can be used to create various elements that fulfil their original but also aesthetic function. The robotic arm creates, using a variety of sculptural or hand tools, a final unique relief of a given element. Three different cement composite mixtures are discussed and their mechanical, physical and thermophysical properties are evaluated. The research aims to investigate and optimise these composites for robotic sculpturing
and 3D printing.
Downloads
References
V. N. Nerella, S. Hempel, V. Mechtcherine. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Construction and Building Materials 205:586–601, 2019. https://doi.org/10.1016/j.conbuildmat.2019.01.235
A. Kazemian, X. Yuan, E. Cochran, B. Khoshnevis. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials 145:639–647, 2017. https://doi.org/10.1016/j.conbuildmat.2017.04.015
A. Rahul, M. Santhanam, H. Meena, Z. Ghani. 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites 97:13–23, 2019. https://doi.org/10.1016/j.cemconcomp.2018.12.014
D. Feys, K. H. Khayat, R. Khatib. How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure? Cement and Concrete Composites 66:38–46, 2016. https://doi.org/10.1016/j.cemconcomp.2015.11.002
S. C. Paul, Y. W. D. Tay, B. Panda, M. J. Tan. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering 18(1):311–319, 2018. https://doi.org/10.1016/j.acme.2017.02.008
TunelBlanka-Info. Výtvarník a robot proměnili výdech v umělecké dílo. 2017, [2022-11-30], https://www.tunelblanka.info/vytvarnik-a-robotpromenili-vydech-v-umelecke-dilo/.
ČSN EN 12390-3 Část 3. Pevnost v tlaku zkušebních těles. 2017, Úřad pro technickou normalizaci, metrologii a státní zkušebnictví.
P. Pytlík. Technologie betonu. 2. vydání. VUTIUM, Brno, Czech Republic, 2000.
K. Ražnjevič. Thermodynamic tables. 1. vyd. Bratislava: Alfa, 2 sv. Edícia energetickej literatúry, 1984.
S.-J. Woo, J.-M. Yang, H. Lee, H.-K. Kwon. Comparison of properties of 3D-printed mortar in air vs. underwater. Materials 14(19):5888, 2021. https://doi.org/10.3390/ma14195888
A. P. Rubin, L. C. Quintanilha, W. L. Repette. Influence of structuration rate, with hydration accelerating admixture, on the physical and mechanical properties of concrete for 3D printing. Construction and Building Materials 363:129826, 2023. https://doi.org/10.1016/j.conbuildmat.2022.129826
E. Lublasser, T. Adams, A. Vollpracht, S. Brell-Cokcan. Robotic application of foam concrete onto bare wall elements – Analysis, concept and robotic experiments. Automation in Construction 89:299–306, 2018. https://doi.org/10.1016/j.autcon.2018.02.005
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Jiří Litoš, Vladimír Šána, Adam Uhlík, Karel Kolář, Markéta Nguyen
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Accepted 2023-05-02
Published 2023-07-04