3D CFD model for the analysis of the flow field through a horizontal axis wind turbine (HAWT)

Authors

  • Noureddine Menasri University of Mohamed Boudiaf M’sila, Faculty of Mechanical Technology, Laboratory of Materials and Mechanical Structures, B.P 166 Ichbilia, M’sila, 28000, Algeria
  • Said Zergane University of Mohamed Boudiaf M’sila, Faculty of Mechanical Technology, Laboratory of Materials and Mechanical Structures, B.P 166 Ichbilia, M’sila, 28000, Algeria
  • Noureddine Aimeur University of Mohamed Boudiaf M’sila, Faculty of Mechanical Technology, Laboratory of Materials and Mechanical Structures, B.P 166 Ichbilia, M’sila, 28000, Algeria
  • Aissa Amour University of Mohamed Boudiaf M’sila, Faculty of Mechanical Technology, Laboratory of Materials and Mechanical Structures, B.P 166 Ichbilia, M’sila, 28000, Algeria

DOI:

https://doi.org/10.14311/AP.2023.63.0250

Keywords:

Computational Fluid Dynamics, Horizontal Axis Wind Turbine (HAWT), aerodynamics, reverse engineering, Coordinate Measuring Machine (CMM)

Abstract

With the world’s growing demand for energy, renewable energy production has become important in providing alternative sources of energy and in reducing the greenhouse effect. This study investigates the aerodynamics and performance of the WG/EV100 micro–Horizontal Axis Wind Turbine (HAWT) using Computational Fluid Dynamics (CFD). The complexity of VAWT aerodynamics, which is inherently unsteady and three-dimensional, makes high-fidelity flow models extremely demanding in terms of computational cost, limiting the analysis to mainly 2D Computational Fluid-Dynamics (CFD) approaches. This article explains how to perform a full 3D unsteady CFD simulation of HAWT. All main parts of the WG/EV100 HAWT were designed in SOLIDWORKS. Only the blade design was reverse engineered due to the unavailability of the CAD model and the complexity of its geometric characteristics. The impeller blade is scanned using a Coordi-nate Measuring Machine (CMM), and the obtained 3D scan data are exported from the PC-DMIS software to GEOMAGIC design X to obtain a CAD model of the blade.

Downloads

Download data is not yet available.

References

M. N. Uddin, F. Abera. Efficiency optimisation based speed control of IPMSM drive. International Journal of Industrial Electronics and Drives 1(1):34–41, 2009. https://doi.org/10.1504/IJIED.2009.025344

E. H. E. Bayoumi. Stator resistance estimator for direct torque control of permanent magnet synchronous motor drive systems using multi-resolution analysis wavelet. International Journal of Industrial Electronics and Drives 1(3):191–201, 2014. https://doi.org/10.1504/IJIED.2014.064092

A. Tummala, R. K. Velamati, D. K. Sinha, et al. A review on small scale wind turbines. Renewable and Sustainable Energy Reviews 56:1351–1371, 2016. https://doi.org/10.1016/j.rser.2015.12.027

D. Rekioua. Wind power electric systems. Springer, London, UK, 1st edn., 2014. https://doi.org/10.1007/978-1-4471-6425-8

C. Hetyei, F. Szlivka. Counter-rotating dual rotor wind turbine layout optimisation. Acta Polytechnica 61(2):342–349, 2021. https://doi.org/10.14311/AP.2021.61.0342

M. Shuwa, G. M. Ngala, A. M. El-jummah. Performance analysis of horizontal axis wind turbine using variable blade pitch control mechanism. Arid Zone Journal of Engineering, Technology and Environment 16(1):179–187, 2020.

M. Shuwa, M. G. Ngala, M. Maina. Development and performance test of a micro horizontal axis wind turbine blade. International Journal of Engineering Research and Applications 6(2):11–17, 2016.

G. M. Ngala, M. Shuwa. Development of a micro horizontal axis wind turbine blade for the semi-arid region of Nigeria. In Sustainable Energy Development and Innovation: Selected Papers from the World Renewable Energy Congress (WREC), pp. 681–691. 2022. https://doi.org/10.1007/978-3-030-76221-6_75

A. Aihara, V. Mendoza, A. Goude, H. Bernhoff. A numerical study of strut and tower influence on the performance of vertical axis wind turbines using computational fluid dynamics simulation. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology 25(5):897–913, 2022. https://doi.org/10.1002/we.2704

J. Chen, Q. Wang, S. Zhang, et al. A new direct design method of wind turbine airfoils and wind tunnel experiment. Applied Mathematical Modelling 40(3):2002–2014, 2016. https://doi.org/10.1016/j.apm.2015.09.051

G. P. Demelio, S. M. Camporeale, A. Castellano, et al. Design and construction of an offshore diffuser augmented wind turbine with a high efficiency alternator. IOP Conference Series: Materials Science and Engineering 1214(1):012030, 2022. https://doi.org/10.1088/1757-899X/1214/1/012030

P. Fuglsang, Christian Bak. Development of the Risø wind turbine airfoils. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology 7(2):145–162, 2004. https://doi.org/10.1002/we.117

H. Sobieczky. Parametric airfoils and wings. In Recent development of aerodynamic design methodologies: Notes on Numerical Flid Mechanics (NNFM), vol. 65, pp. 71–87. 1999. https://doi.org/10.1007/978-3-322-89952-1_4

Y. M. El-Okda. Design methods of horizontal axis wind turbine rotor blades. International Journal of Industrial Electronics and Drives 2(3):135–150, 2015. https://doi.org/10.1504/IJIED.2015.072789

M. Aladag, M. Bernacka, M. Joka-Yildiz, et al. Reverse engineering of parts with asymmetrical properties using replacement materials. Acta Mechanica et Automatica 16(3):250–258, 2022. https://doi.org/10.2478/ama-2022-0030

A. Filippone. Airfoil inverse design and optimization by means of viscous-inviscid techniques. Journal of Wind Engineering and Industrial Aerodynamics 56(2–3):123–136, 1995. https://doi.org/10.1016/0167-6105(94)00095-U

G. D. Barai, S. S. Shete, L. P. Raut. Design and development of a component by reverse engineering. IJRET: International Journal of Research in Engineering and Technology 4(5):539–546, 2015. https://doi.org/10.15623/ijret.2015.0405100

M. Manić, Z. Stamenković, M. Mitković, et al. Design of 3D model of customized anatomically adjusted implants. Facta Universitatis, Series: Mechanical Engineering 13(3):269–282, 2015.

P. Wang, J. Yang, Y. Hu, et al. Innovative design of a helmet based on reverse engineering and 3D printing. Alexandria Engineering Journal 60(3):3445–3453, 2021. https://doi.org/10.1016/j.aej.2021.02.006

J. F. Manwell, J. G. McGowan, A. L. Rogers. Wind energy explained: Theory, design and application. John Wiley & Sons, Chichester, UK, 2nd edn., 2010.

H. Al-Qarishey, R. W. Fletcher, E. A. Alkareem. Computational fluid dynamics turbulence and wake study of a utility-scale rotating three-blade horizontal axis wind turbine. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, vol. 8B, p. V08BT08A026. 2021. https://doi.org/10.1115/IMECE2021-70095

I. A. Abdelrahman, M. Y. Mahmoud, M. M. Abdelfattah, et al. Computational and experimental investigation of lotus-inspired horizontal-axis wind turbine blade. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 87(1):52–67, 2021. https://doi.org/10.37934/arfmts.87.1.5267

S. Merryisha, P. Rajendran. Experimental and CFD analysis of surface modifiers on aircraft wing: A review. CFD Letters 11(10):46–56, 2019.

C. J. Bai, F. B. Hsiao, M. H. Li, et al. Design of 10 kW horizontal-axis wind turbine (HAWT) blade and aerodynamic investigation using numerical simulation. Procedia Engineering 67:279–287, 2013. https://doi.org/10.1016/j.proeng.2013.12.027

N. A. Mezaal, K. V. Osintsev, S. V. Alyukov. The computational fluid dynamics performance analysis of horizontal axis wind turbine. International Journal of Power Electronics and Drive Systems 10(2):1072–1080, 2019. https://doi.org/10.11591/ijpeds.v10.i2.pp1072-1080

P. I. Muiruri, O. S. Motsamai. Three dimensional CFD simulations of a wind turbine blade section; Validation. Journal of Engineering Science & Technology Review 11(1):138–145, 2018. https://doi.org/10.25103/jestr.111.16

I. Paraschivoiu, F. Delclaux. Double multiple streamtube model with recent improvements (for predicting aerodynamic loads and performance of Darrieus vertical axis wind turbines). Journal of Energy 7(3):250–255, 1983. https://doi.org/10.2514/3.48077

Y. El-khchine, M. Sriti. Performance prediction of a horizontal axis wind turbine using BEM and CFD methods. MATEC Web of Conferences 45:05005, 2016. https://doi.org/10.1051/matecconf/20164505005

M. Hasan, A. El-Shahat, M. Rahman. Performance investigation of three combined airfoils bladed small scale horizontal axis wind turbine by BEM and CFD analysis. Journal of Power and Energy Engineering 5(5):14–27, 2017. https://doi.org/10.4236/jpee.2017.55002

M. Khaled, M. M. Ibrahim, H. E. A. Hamed, A. F. A. Gawad. Aerodynamic design and blade angle analysis of a small horizontal-axis wind turbine. American Journal of Modern Energy 3(2):23–37, 2017. https://doi.org/10.11648/j.ajme.20170302.12

M. Chandrala, A. Choubey, B. Gupta. Aerodynamic analysis of horizontal axis wind turbine blade. International Journal of Engineering Research and Applications (IJERA) 2(6):1244–1248, 2012.

N. Khlaifat, A. Altaee, J. Zhou, et al. Optimization of a small wind turbine for a rural area: A case study of Deniliquin, New South Wales, Australia. Energies 13(9):2292, 2020. https://doi.org/10.3390/en13092292

A. Rossetti, G. Pavesi. Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up. Renewable Energy 50:7–19, 2013. https://doi.org/10.1016/j.renene.2012.06.025

J. Zhang, J. Wang, S. Yan. The effect of yaw speed and delay time on power generation and stress of a wind turbine. International Journal of Green Energy 20(2):153–165, 2023. https://doi.org/10.1080/15435075.2021.2023884

R. Udroiu. Research regarding reverse engineering for aircraft components. MATEC Web of Conferences 94:01012, 2017. https://doi.org/10.1051/matecconf/20179401012

H. Park, J. Roh, K. C. Oh, et al. Modeling and optimization of water mist system for effective aircooled heat exchangers. International Journal of Heat and Mass Transfer 184:122297, 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122297

ANSYS, Inc. Ansys fluent theory guide. Ansys Inc, USA 15317:724–746, 2011.

Downloads

Published

2023-09-05

How to Cite

Menasri, N., Zergane , S., Aimeur, N., & Amour, A. (2023). 3D CFD model for the analysis of the flow field through a horizontal axis wind turbine (HAWT). Acta Polytechnica, 63(4), 250–259. https://doi.org/10.14311/AP.2023.63.0250

Issue

Section

Articles