Fractional multi-loop active disturbance rejection control for a lower knee exoskeleton system

Authors

  • Nasir Ahmed Al-Awad University of Mustansiriyah, Department of Computer Engineering, 10001 Baghdad, Iraq
  • Amjad Jaleel Humaidi University of Technology, Control and Systems Engineering Department, 10066 Baghdad, Iraq
  • Ahmed Sabah Al-Araji University of Technology, Department of Computer Engineering, 10066 Baghdad, Iraq

DOI:

https://doi.org/10.14311/AP.2023.63.0158

Keywords:

ADRC, fractional calculus, exoskeleton system, exogenous disturbance, extended state observer

Abstract

Rehabilitation Exoskeleton is becoming more and more important in physiotherapists’ routine work. To improve the treatment performance, such as reducing the recovery period and/or monitoring and reacting to unpredictable situations, the rehabilitation manipulators need to help the patients in various physical trainings. A special case of the active disturbance rejection control (ADRC) is applied to govern a proper realisation of basic limb rehabilitation trainings. The experimental study is performed on a model of a flexible joint manipulator, whose behaviour resembles a real exoskeleton rehabilitation device (a one-degree-of-freedom, rigid-link, flexible-joint manipulator). The fractional (FADRC) is an unconventional model-independent approach, acknowledged as an effective controller in the existence of total plant uncertainties, and these uncertainties are inclusive of the total disturbances and unknown dynamics of the plant. In this work, three FADRC schemes are used, the first one using a fractional state observer (FSO), or FADRC1, second one using a fractional proportional-derivative controller (FPD), or FADRC2, and the third one a Multi-loop fractional in PD-loop controller and the observer-loop (Feedforward and Feedback), or FADRC3. The simulated Exoskeleton system is subjected to a noise disturbance and the FADRC3 shows the effectiveness to compensate all these effects and satisfies the desired position when compared with FADRC1 and FADRC2. The design and simulation were carried out in MATLAB/Simulink.

Downloads

Download data is not yet available.

References

A. M. Dollar, H. Herr. Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Transactions on Robotics 24(1):144–158, 2008. https://doi.org/10.1109/TRO.2008.915453

R. Baud, A. R. Manzoori, A. Ijspeert, M. Bouri. Review of control strategies for lower-limb exoskeletons to assist gait. Journal of NeuroEngineering Rehabilitation 18:119, 2031. https://doi.org/10.1186/s12984-021-00906-3

C. Carignan, J. Tang, S. Roderick. Development of an exoskeleton haptic interface for virtual task training. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3697–3702. 2009. https://doi.org/10.1109/IROS.2009.5354834

H. Zhang, S. Balasubramanian, R. Wei, et al. RUPERT closed loop control design. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3686–3689. 2010. https://doi.org/10.1109/IEMBS.2010.5627647

K. Suzuki, Y. Kawamura, T. Hayashi, et al. Intention-based walking support for paraplegia patient. In 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2707–2713. 2005. https://doi.org/10.1109/ICSMC.2005.1571559

H. Kazerooni, J.-L. Racine, L. Huang, R. Steger. On the control of the Berkeley Lower Extremity Exoskeleton (BLEEX). In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 4353–4360. 2005. https://doi.org/10.1109/ROBOT.2005.1570790

H. K. Khalil. Nonlinear Systems. Pearson Education. Prentice Hall, 2002.

M. Khamar, M. Edrisi. Designing a backstepping sliding mode controller for an assistant human knee exoskeleton based on nonlinear disturbance observer. Mechatronics 54:121–132, 2018. https://doi.org/10.1016/j.mechatronics.2018.07.010

M.-K. Chang. An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators. Control Engineering Practice 18(1):13–22, 2010. https://doi.org/10.1016/j.conengprac.2009.08.005

S. M. Taslim Reza, N. Ahmad, I. A. Choudhury, R. A. R. Ghazilla. A fuzzy controller for lower limb exoskeletons during sit-to-stand and stand-to-sit movement using wearable sensors. Sensors 14(3):4342–4363, 2014. https://doi.org/10.3390/s140304342

T. H. Do, D. T. Vu. An intelligent control for lower limb exoskeleton for rehabilitation. SSRG International Journal of Electrical and Electronics Engineering 4(8):13–19, 2017. https://doi.org/10.14445/23488379/IJEEE-V4I8P103

L. Vaca Benitez, M. Tabie, N. Will, et al. Exoskeleton technology in rehabilitation: Towards an emg-based orthosis system for upper limb neuromotor rehabilitation. Journal of Robotics 2013:610589, 2013. https://doi.org/10.1155/2013/610589

C. Caulcrick, W. Huo, E. Franco, et al. Model predictive control for human-centred lower limb robotic assistance. IEEE Transactions on Medical Robotics and Bionics 3(4):980–991, 2021. https://doi.org/10.1109/TMRB.2021.3105141

D. Sun. Comments on active disturbance rejection control. IEEE Transactions on Industrial Electronics 54(6):3428–3429, 2007. https://doi.org/10.1109/TIE.2007.909047

W. R. Abdul-Adheem, A. T. Azar, I. K. Ibraheem, A. J. Humaidi. Novel active disturbance rejection control based on nested linear extended state observers. Applied Sciences 10(12):4069, 2020. https://doi.org/10.3390/app10124069

R. Pérez-San Lázaro, I. Salgado, I. Chairez. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation. ISA Transactions 109:218–228, 2021. https://doi.org/10.1016/j.isatra.2020.10.008

M. Babaiasl, S. N. Goldar, M. H. Barhaghtalab, V. Meigoli. Sliding mode control of an exoskeleton robot for use in upper-limb rehabilitation. In 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), pp. 694–701. 2015. https://doi.org/10.1109/ICRoM.2015.7367867

B. S. K. K. Ibrahim, R. Ngadengon, M. N. Ahmad. Genetic algorithm optimized integral sliding mode control of a direct drive robot arm. In 2012 International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 328–333. 2012. https://doi.org/10.1109/ICCAIS.2012.6466612

A. Humaidi, M. Hameed. Development of a new adaptive backstepping control design for a non-strict and under-actuated system based on a PSO tuner. Information 10(2):38, 2019. https://doi.org/10.3390/info10020038

A. Al-qassar, A. Abdulkareem, A. Hasan, et al. Grey-Wolf optimization better enhances the dynamic performance of roll motion for tail-sitter VTOL aircraft guided and controlled by STSMC. Journal of Engineering Science and Technology 16:1932–1950, 2021.

L. Rasheed. Optimal tuning of linear quadratic regulator controller using ant colony optimization algorithm for position control of a permanent magnet DC motor. Iraqui Journal of Computers, Cmmunications, Control and Systems Engineering 20(3):29–41, 2020. https://doi.org/10.33103/uot.ijccce.20.3.3

S. Got, M. Lee, M. Park. Fuzzy-sliding mode control of a polishing robot based on genetic algorithm. KSME International Journal 15:580–591, 2001. https://doi.org/10.1007/BF03184374

S. M. Mahdi, N. Q. Yousif, A. A. Oglah, et al. Adaptive synergetic motion control for wearable knee-assistive system: A rehabilitation of disabled patients. Actuators 11(7):176, 2022. https://doi.org/10.3390/act11070176

A. J. Humaidi, A. A. Mohammed, A. H. Hameed, et al. State estimation of rotary inverted pendulum: A comparative study of observers performance. In 2020 IEEE Congreso Bienal de Argentina (ARGENCON), pp. 1–7. 2020. https://doi.org/10.1109/ARGENCON49523.2020.9505507

J. Han. From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics 56(3):900–906, 2009. https://doi.org/10.1109/TIE.2008.2011621

H. Yang, Y. Yu, J. Zhang. Angle tracking of a pneumatic muscle actuator mechanism under varying load conditions. Control Engineering Practice 61:1–10, 2017. https://doi.org/10.1016/j.conengprac.2017.01.008

Y. Long, Z. Du, L. Cong, et al. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Transactions 67:389–397, 2017. https://doi.org/10.1016/j.isatra.2017.01.006

Y. Chen, Y. Wei, X. Zhou, et al. Stability for nonlinear fractional order systems: An indirect approach. Nonlinear Dynamics 89:1011–1018, 2017. https://doi.org/10.1007/s11071-017-3497-y

A. Jmal, O. Naifar, A. Ben Makhlouf, et al. Adaptive stabilization for a class of fractional-order systems with nonlinear uncertainty. Arabian Journal for Science and Engineering 45:2195–2203, 2020. https://doi.org/10.1007/s13369-019-04148-3

A. Abid, R. Jallouli-Khlif, N. Derbel, P. Melchior. Crone Controller Design for a Robot Arm, pp. 187–200. Springer Singapore, Singapore, 2019. https://doi.org/10.1007/978-981-13-2212-9_8

H. Delavari, R. Ghaderi, N. Ranjbar, et al. Adaptive fractional PID controller for robot manipulator. In The 4th IFAC Workshop Fractional Differentiation and its Applications, vol. FDA10-038, pp. 18–20. 2010. https://doi.org/10.48550/arXiv.1206.2027

S. Ahmed, H. Wang, Y. Tian. Robust adaptive fractional-order terminal sliding mode control for lowerlimb exoskeleton. Asian Journal of Control 21(1):473–482, 2019. https://doi.org/10.1002/asjc.1964

P. Shah, S. Agashe. Review of fractional PID controller. Mechatronics 38:29–41, 2016. https://doi.org/10.1016/j.mechatronics.2016.06.005

I. Zaway, R. Jallouli-Khlif, B. Maalej, et al. From PD to fractional order PD controller used for gait rehabilitation. In 2021 18th International Multi-Conference on Systems, Signals and Devices (SSD), pp. 948–953. 2021. https://doi.org/10.1109/SSD52085.2021.9429318

D. Li, P. Ding, Z. Gao. Fractional active disturbance rejection control. ISA Transactions 62:109–119, 2016. https://doi.org/10.1016/j.isatra.2016.01.022

J. Song, J. Lin, L. Wang, et al. Nonlinear FOPID and active disturbance rejection hypersonic vehicle control based on DEM biogeography-based optimization. Journal of Aerospace Engineering 30(6):04017079, 2017. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000786

B. Pradhan, X. Zhou, C. Yang, et al. A high-precision control scheme based on active disturbance rejection control for a three-axis inertially stabilized platform for aerial remote sensing applications. Journal of Sensors 2018:7295852, 2018. https://doi.org/10.1155/2018/7295852

R. S. Al-Azzawi, M. A. Simaan. On the selection of leader in Stackelberg games with parameter uncertainty. International Journal of Systems Science 52(1):86–94, 2021. https://doi.org/10.1080/00207721.2020.1820097

P. Chen, Y. Luo, W. Zheng, Z. Gao. A new active disturbance rejection controller design based on fractional extended state observer. In 2019 Chinese Control Conference (CCC), pp. 4276–4281. 2019. https://doi.org/10.23919/ChiCC.2019.8865339

F. Hongqing, Y. Xinjian, L. Peng. Active-disturbance-rejection-control and fractional-order-proportional-integral-derivative hybrid control for hydroturbine speed governor system. Measurement and Control 51(5-6):192–201, 2018. https://doi.org/10.1177/0020294018778312

S. Mefoued, D. Belkhiat. A robust control scheme based on sliding mode observer to drive a kneeexoskeleton. Asian Journal of Control 21(1):439–455, 2019. https://doi.org/10.1002/asjc.1950

R. Mallat, V. Bonnet, G. Venture, et al. Dynamics assessment and minimal model of an orthosis-assisted knee motion. In 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), pp. 352–357. 2020. https://doi.org/10.1109/BioRob49111.2020.9224432

P. A. Mozuca, J. D. Gallo, R. I. Rincon, G. A. Ramos. Performance of different ADRC based control methods in a nonlinear plant with uncertainties. In 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), pp. 1–6. 2019. https://doi.org/10.1109/CCAC.2019.8921151

W. R. Abdul-Adheem, I. K. Ibraheem, A. J. Humaidi. Model-free active input–output feedback linearization of a single-link flexible joint manipulator: An improved active disturbance rejection control approach. Measurement and Control 54(5-6):856–871, 2011. https://doi.org/10.1177/0020294020917171

X. Chen, D. Li, Z. Gao, C. Wang. Tuning method for second-order active disturbance rejection control. In Proceedings of the 30th Chinese Control Conference, pp. 6322–6327. 2011.

R. Caponetto, E. C. de Oliveira, J. A. Tenreiro Machado. A review of definitions for fractional derivatives and integral. Mathematical Problems in Engineering 2014:238459, 2014. https://doi.org/10.1155/2014/238459

N. Alawad, A. Humaidi, A. Alaraji. Fractional proportional derivative-based active disturbance rejection control of knee exoskeleton device for rehabilitation care. Indonesian Journal of Electrical Engineering and Computer Science 28(3):1405–1413, 2014. https://doi.org/10.11591/ijeecs.v28.i3.pp1405-1413

M. Zamani, M. Karimi-Ghartemani, N. Sadati, M. Parniani. Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice 17(12):1380–1387, 2009. https://doi.org/10.1016/j.conengprac.2009.07.005

A. Humaidi, H. Badr. Linear and nonlinear active disturbance rejection controllers for single-link flexible joint robot manipulator based on PSO tuner. Journal of Engineering Science and Technology Review 11(3):133– 138, 2018. https://doi.org/10.25103/jestr.113.18

J.-Y. Cao, J. Liang, B.-G. Cao. Optimization of fractional order PID controllers based on genetic algorithms. In 2005 International Conference on Machine Learning and Cybernetics, vol. 9, pp. 5686–5689. 2005. https://doi.org/10.1109/ICMLC.2005.1527950

M. Y. Hassan, A. J. Humaidi, M. K. Hamza. On the design of backstepping controller for acrobot system based on adaptive observer. International Review of Electrical Engineering 15(4):328–335, 2020. https://doi.org/10.15866/iree.v15i4.17827

N. Alawad, A. Humaidi, A. Al-Araji. Improved active disturbance rejection control for the knee joint motion model. Mathematical Modelling of Engineering Problems 9(2):477–483, 2022. https://doi.org/10.18280/mmep.090225

I. Ibraheem, W. Abdul-Adheem. On the improved nonlinear tracking differentiator based nonlinear PID controller design. International Journal of Advanced Computer Science and Applications 7(10):234–241, 2016. https://doi.org/10.14569/IJACSA.2016.071032

Y. Aydin, O. Tokatli, V. Patoglu, C. Basdogan. Stable physical human-robot interaction using fractional order admittance control. IEEE Transactions on Haptics 11(3):464–475, 2018. https://doi.org/10.1109/TOH.2018.2810871

P. Chen, Y. Luo, W. Zheng, et al. Fractional order active disturbance rejection control with the idea of cascaded fractional order integrator equivalence. ISA Transactions 114:359–369, 2021. https://doi.org/10.1016/j.isatra.2020.12.030

M. Q. Kasim, R. F. Hassan, A. J. Humaidi, et al. Control algorithm of five-level asymmetric stacked converter based on Xilinx system generator. In 2021 IEEE 9th Conference on Systems, Process and Control (ICSPC 2021), pp. 174–179. 2021. https://doi.org/10.1109/ICSPC53359.2021.9689173

A. J. Humaidi, S. K. Kadhim, A. S. Gataa. Optimal adaptive magnetic suspension control of rotary impeller for artificial heart pump. Cybernetics and Systems 53(1):141–167, 2022. https://doi.org/10.1080/01969722.2021.2008686

O. Wanhab, A. Al-Araji. An optimal path planning algorithms for a mobile robot. Iraqi Journal of Computers, Communications, Control and Systems Engineering 21(2):44–58, 2021. https://doi.org/10.33103/uot.ijccce.21.2.4

F. Hussein, S. Raafat. Optimal linear quadratic control for knee-ankle orthosis system. Iraqi Journal of Computers, Communications, Control & Systems Engineering 22(2):109–124, 2022. https://doi.org/10.33103/uot.ijccce.22.2.10

N. Alawad, A. Humaidi, A. Alaraji. Observer sliding mode control design for lower exoskeleton system: Rehabilitation case. Journal of Robotics and Control 3(4):476–482, 2022. https://doi.org/10.18196/jrc.v3i4.15239

N. Ahmed, A. Humaidi, A. Sabah. Clinical trajectory control for lower knee rehabilitation using ADRC method. Journal of Applied Research and Technology 20(5):576–583, 2022. https://doi.org/10.22201/icat.24486736e.2022.20.5.1920

N. Alawad, A. Humaidi, A. Al-Obaidi, A. Alaraj. Active disturbance rejection control of wearable lower limb system based on reduced ESO. Indonesian Journal of Science and Technology 7(2):203–218, 2022. https://doi.org/10.17509/ijost.v7i2.46435

S. Husain, M. Kadhim, A. Al-Obaidi, et al. Design of robust control for vehicle steer-by-wire system. Indonesian Journal of Science and Technology 8(2):197–216, 2023. https://doi.org/10.17509/ijost.v8i2.54794

N. A. Al-Awad. Model reference adaptive control-based genetic algorithm desing for heading ship motion. Acta Polytechnica 60(3):197–205, 2020. https://doi.org/10.14311/AP.2020.60.0197

Downloads

Published

2023-07-04

How to Cite

Al-Awad, N. A., Humaidi, A. J., & Al-Araji, A. S. (2023). Fractional multi-loop active disturbance rejection control for a lower knee exoskeleton system. Acta Polytechnica, 63(3), 158–170. https://doi.org/10.14311/AP.2023.63.0158

Issue

Section

Articles