The classification of eye diseases from fundus images based on CNN and pretrained models

Authors

  • Samir Benbakreti National High School of Telecommunications and ICT (ENSTTIC), Department of specialty, Oran 31 000, Algeria https://orcid.org/0000-0001-6587-6626
  • Soumia Benbakreti University of Djillali Liabes, Laboratory of Mathematic, BP 89, Sidi Bel Abbes 22000, Algeria
  • Umut Ozkaya Konya Technical University, Engineering and Natural Science Faculty, Electrical and Electronics Engineering, Konya, Turkey

DOI:

https://doi.org/10.14311/AP.2024.64.0001

Keywords:

eye diseases classification, retinal fundus images, deep learning, pretrained models, SGDM

Abstract

Visual impairment affects more than a billion people worldwide due to insufficient care or inadequate vision screening. Computer-aided diagnosis using deep neural networks is a promising approach, it can analyse and process retinal fundus images, providing valuable reference data for doctors in clinical diagnosis or screening. This study aims to achieve an accurate classification of fundus images, including images of healthy patients as well as those with diabetic retinopathy, cataracts, and glaucoma, using a convolutional neural network (CNN) architecture and several pretrained models (AlexNet, GoogleNet, ResNet18, ResNet50, YOLOv3, and VGG 19). To enhance the training process, a mirror effect technique was applied to augment the volume of data. The experimental study resulted in very satisfactory outcomes, with the GoogleNet model paired with the SGDM optimiser achieving the highest accuracy (92.7 %).

Downloads

Download data is not yet available.

References

P. R. Velagaleti, M. H. Buonarati. Challenges and strategies in drug residue measurement (bioanalysis) of ocular tissues. In B. C. Gilger (ed.), Ocular Pharmacology and Toxicology, pp. 33–52. Humana Press, Totowa, NJ, 2013. https://doi.org/10.1007/7653_2013_6

World Health Organisation. [2023-02-15]. https://www.who.int/news-room/factsheets/detail/blindness-and-visual-impairment

R. R. A. Bourne, S. R. Flaxman, T. Braithwaite, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and metaanalysis. The Lancet Global Health 5(9):e888–e897, 2017. https://doi.org/10.1016/S2214-109X(17)30293-0

National Eye Institute. Statistics and data: Cataracts. 2018. [2023-02-15]. https://nei.nih.gov/eyedata/cataract

D. Pascolini, S. P. Mariotti. Global estimates of visual impairment: 2010. British Journal of Ophthalmology 96(5):614–618, 2012. https://doi.org/10.1136/BJOPHTHALMOL-2011-300539

World Health Organisation. [2023-02-15]. https://www.who.int/news/item/08-10-2019-wholaunches-first-world-report-on-vision

P. Storey, B. Munoz, D. Friedman, S. West. Racial differences in lens opacity incidence and progression: The Salisbury Eye Evaluation (SEE) Study. Investigative Ophthalmology & Visual Science 54(4):3010–3018, 2013. https://arvojournals.org/arvo/content_public/journal/iovs/933467/i1552-5783-54-4-3010.pdf https://doi.org/10.1167/iovs.12-11412

S. Kumar, S. Pathak, B. Kumar. Automated detection of eye related diseases using digital image processing. In Handbook of Multimedia Information Security: techniques and applications, pp. 513–544. 2019.

S. Júnior, D. Welfer. Automatic detection of microaneurysms and hemorrhages in color eye fundus images. International Journal of Computer Science and Information Technology 5(5):21–37, 2013. https://doi.org/10.5121/ijcsit.2013.5502

Santé et sciences en Algérie. [2023-01-29]. https://www.aps.dz/sante-sciencetechnologie/66828-la-sao-appelle-a-moderniserles-plateaux-techniques-des-chu

U. Farooq, N. Y. Sattar. Improved automatic localization of optic disc in retinal fundus using image enhancement techniques and svm. In 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 532–537. 2015. https://doi.org/10.1109/ICCSCE.2015.7482242

G. An, K. Omodaka, S. Tsuda, et al. Comparison of machine-learning classification models for glaucoma management. Journal of Healthcare Engineering 2018:6874765, 2018. https://doi.org/10.1155/2018/6874765

A. Siddiqui, V. Garg. An analysis of adaptable intelligent models for pulmonary tuberculosis detection and classification. SN Computer Science 3:34, 2022. https://doi.org/10.1007/s42979-021-00890-4

A. Bassel, A. Abdulkareem, Z. Abdi, et al. Automatic malignant and benign skin cancer classification using a hybrid deep learning approach. Diagnostics 12(10):2472, 2022. https://doi.org/10.3390/diagnostics12102472

B. Samir, S. Mwanahija, B. Soumia, U. Özkaya. Deep learning for classification of chest X-ray images (Covid 19), 2023. [2023-02-20]. arXiv:2301.02468 https://doi.org/10.48550/arXiv.2301.02468

S. S. M. Sheet, T.-S. Tan, M. A. As’ari, et al. Retinal disease identification using upgraded CLAHE filter and transfer convolution neural network. ICT Express 8(1):142–150, 2022. https://doi.org/10.1016/j.icte.2021.05.002

R. Sarki, K. Ahmed, H. Wang, Y. Zhang. Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Information Science and Systems 8(1):32, 2020. https://doi.org/10.1007/s13755-020-00125-5

A. M. Alqudah. AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Medical & biological engineering & computing 58:41–53, 2020. https://doi.org/10.1007/s11517-019-02066-y

H. Gu, Y. Guo, L. Gu, et al. Deep learning for identifying corneal diseases from ocular surface slit-lamp photographs. Scientific Reports 10:17851, 2020. https://doi.org/10.1038/s41598-020-75027-3

Y. Peng, S. Dharssi, Q. Chen, et al. DeepSeeNet: A deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs. Ophthalmology 126(4):565–575, 2019. https://doi.org/10.1016/j.ophtha.2018.11.015

M. Alam, D. Le, J. I. Lim, et al. Supervised machine learning based multi-task artificial intelligence classification of retinopathies. Journal of Clinical Medicine 8(6):872, 2019. https://doi.org/10.3390/jcm8060872

X. Zhang, Z. Xiao, R. Higashita, et al. Adaptive feature squeeze network for nuclear cataract classification in as-oct image. Journal of Biomedical Informatics 128:104037, 2022. https://doi.org/10.1016/j.jbi.2022.104037

A. Imran, J. Li, Y. Pei, et al. Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network. The Visual Computer 37:2407–2417, 2020. https://doi.org/10.1007/s00371-020-01994-3

M. A. S. Ali, K. Balasubramanian, G. D. Krishnamoorthy, et al. Classification of glaucoma based on elephant-herding optimization algorithm and deep belief network. Electronics 11(11):1763, 2022. https://doi.org/10.3390/electronics11111763

A. R. Prananda, E. L. Frannita, A. H. T. Hutami, et al. Retinal nerve fiber layer analysis using deep learning to improve glaucoma detection in eye disease assessment. Applied Sciences 13(1):37, 2022. https://doi.org/10.3390/app13010037

V. Rajinikanth, R. Sivakumar, D. J. Hemanth, et al. Automated classification of retinal images into AMD/non-AMD class—a study using multi-threshold and Gassian-filter enhanced images. Evolutionary Intelligence 14:1163–1171, 2021. https://doi.org/10.1007/s12065-021-00581-2

A. Miere, T. L. Meur, K. Bitton, et al. Deep learning-based classification of inherited retinal diseases using fundus autofluorescence. Journal of Clinical Medicine 9(10):3303, 2020. https://doi.org/10.3390/jcm9103303

D. H. Hubel, T. N. Wiesel. Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology 195(1):215–243, 1968. https://doi.org/10.1113/jphysiol.1968.sp008455

S. Ruder. An overview of gradient descent optimization algorithms. [2023-02-26]. arXiv:1609.04747 https://doi.org/10.48550/ARXIV.1609.04747

D. P. Kingma, J. Ba. Adam: A method for stochastic optimization, 2014. [2023-02-26]. arXiv:1412.6980 https://doi.org/10.48550/arXiv.1412.6980

T. Tieleman, G. Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning 4(2):26–31, 2012.

J. Redmon, A. Farhadi. YOLOv3: An incremental improvement, 2018. [2023-02-29]. arXiv:1804.02767 https://doi.org/10.48550/arXiv.1804.02767

S. Li, L. Wang, J. Li, Y. Yao. Image classification algorithm based on improved AlexNet. Journal of Physics: Conference Series 1813:012051, 2021. https://doi.org/10.1088/1742-6596/1813/1/012051

K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. 2016. https://doi.org/10.1109/CVPR.2016.90

C. Szegedy, W. Liu, Y. Jia, et al. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9. 2015. https://doi.org/10.1109/CVPR.2015.7298594

A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. Burges, L. Bottou, K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems, vol. 25, pp. 1–9. Curran Associates, Inc., 2012. https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Downloads

Published

2024-03-04

How to Cite

Benbakreti, S., Benbakreti, S., & Ozkaya, U. (2024). The classification of eye diseases from fundus images based on CNN and pretrained models. Acta Polytechnica, 64(1), 1–11. https://doi.org/10.14311/AP.2024.64.0001

Issue

Section

Articles