Parametric optimisation of laser welding of stainless steel 316L

Authors

  • Adnan Qayyum Butt Pakistan Institute of Nuclear Science and Technology, Materials Division, Pakistan
  • Qanita Tayyaba Pakistan Institute of Nuclear Science and Technology, Materials Division, Pakistan
  • Muhammad Ali Raza Pakistan Institute of Nuclear Science and Technology, Materials Division, Pakistan
  • Abdul Rehman Pakistan Institute of Nuclear Science and Technology, Materials Division, Pakistan; Tsinghua University, School of Materials Science and Engineering, Key Laboratory of Advanced Materials of Ministry of Education, 100084 Beijing, China
  • Tayyab Ali Khan Pakistan Institute of Nuclear Science and Technology, Materials Division, Pakistan
  • Muhmmad Shahzad Pakistan Institute of Nuclear Science and Technology, Materials Division, Pakistan; Clausthal University of Technology, Institute of Materials Science & Engineering, Agricolastr. 6, 38678 Clausthal-Zellerfeld, Germany

DOI:

https://doi.org/10.14311/AP.2024.64.0077

Keywords:

FEM: Finite Element Method, FWHM: Full Width Half Maxima, PWM: Pulse Width Modulation, HAZ: Hear Affected Zone

Abstract

This paper presents numerical and experimental studies focused on the optimisation of laser welding parameters for AISI 316L stainless steel. The focus of the numerical studies was to obtain the mathematical model with the least time complexity and the highest fidelity. Based on the comparison of different mathematical models, a combination of two models, double ellipsoidal and conical models, was found to be optimal for the numerical simulation of the laser welding process. The studies were also complemented by material characterization studies for validation purpose. A pulse duration of 8 milliseconds and a current of 400 amperes with an average power of 380W were found to be the optimum parameters for laser welding of standard gauge 12 sheet of stainless steel AISI 316L. In addition, the effect of duty factor of the pulsed laser beam on the weld profile was also investigated and was found to be a major contributor to the optimisation process. The properties of the sample welded with the optimised set of parameters were also compared with the base metal, and based on the mechanical characterisation studies, it was found that the yield strength and hardness of the welded sample were improved, but the overall ductility was slightly reduced as compared to the base metal. The average weld zone size was also reduced by increasing the power density due to multiple reflections of the beam.

Downloads

Download data is not yet available.

References

H. T. Serindağ, G. Çam. Multi-pass butt welding of thick AISI 316L plates by gas tungsten arc welding: Microstructural and mechanical characterization. International Journal of Pressure Vessels and Piping 200:104842, 2022. https://doi.org/10.1016/j.ijpvp.2022.104842

H. T. Serindağ, G. Çam. Characterizations of microstructure and properties of dissimilar AISI 316L/9Ni low-alloy cryogenic steel joints fabricated by gas tungsten arc welding. Journal of Materials Engineering and Performance 32(15):7039–7049, 2023. https://doi.org/10.1007/s11665-022-07601-x

F. S. Neto, D. Neves, O. M. M. Silva, et al. An analysis of the mechanical behavior of AISI 4130 steel after TIG and laser welding process. Procedia Engineering 114:181–188, 2015. https://doi.org/10.1016/j.proeng.2015.08.057

G. Çam, M. Koçak. Progress in joining of advanced materials. International Materials Reviews 43(1):1–44, 1998. https://doi.org/10.1179/imr.1998.43.1.1

M. Şenol, G. Çam. Investigation into microstructures and properties of AISI 430 ferritic steel butt joints fabricated by GMAW. International Journal of Pressure Vessels and Piping 202:104926, 2023. https://doi.org/10.1016/j.ijpvp.2023.104926

G. Çam, M. Koçak. Progress in joining of advanced materials: Part 1: Solid state joining, fusion joining, and joining of intermetallics. Science and Technology of Welding and Joining 3(3):105–126, 1998. https://doi.org/10.1179/stw.1998.3.3.105

G. Çam, M. Koçak, J. dos Santos. Developments in laser welding of metallic materials and characterization of the joints. Welding in the World 43:13–26, 1999.

G. Çam, Ç. Yeni, S. Erim, et al. Investigation into properties of laser welded similar and dissimilar steel joints. Science and Technology of Welding and Joining 3(4):177–189, 1998. https://doi.org/10.1179/stw.1998.3.4.177

S. Katayama. 7 - Understanding and Improving Process Control in Pulsed and Continuous Wave Laser Welding, pp. 153–183. Woodhead Publishing, 2018. https://doi.org/10.1016/B978-0-08-101252-9.00007-8

A. Sanderson, C. S. Punshon, J. D. Russell. Advanced welding processes for fusion reactor fabrication. Fusion Engineering and Design 49–50:77–87, 2000. https://doi.org/10.1016/S0920-3796(00)00407-5

H. GuoMing, Z. Jian, L. JianQang. Dynamic simulation of the temperature field of stainless steel laser welding. Materials & Design 28(1):240–245, 2007. https://doi.org/10.1016/j.matdes.2005.06.006

M. R. Frewin, D. A. Scott. Finite element model of pulsed laser welding. Welding Journal 78:15-s–22-s, 1999.

N. Sonti, M. F. Amateau. Finite-element modeling of heat flow in deep-penetration laser welds in aluminum alloys. Numerical Heat Transfer, Part A: Applications 16(3):351–370, 1989. https://doi.org/10.1080/10407788908944721

W. S. Chang, S. J. Na. A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining. Journal of Materials Processing Technology 120(1):208–214, 2002. https://doi.org/10.1016/S0924-0136(01)00716-6

M. Pastor, H. Zhao, T. DebRoy. Continuous wave-Nd: yttrium-aluminum-garnet laser welding of am60B magnesium alloy. Journal of Laser Applications 12(3):91–100, 2000. https://doi.org/10.2351/1.521922

W. J. Suder, S. Williams. Power factor model for selection of welding parameters in CW laser welding. Optics & Laser Technology 56:223–229, 2014. https://doi.org/10.1016/j.optlastec.2013.08.016

S. Kuo. Welding Metallurgy. John Wiley & Sons, Inc., Hoboken, New Jersey, 2nd edn., 2003. ISBN 0-471-43491-4.

N. Kumar, M. Mukherjee, A. Bandyopadhyay. Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels. Optics & Laser Technology 88:24–39, 2017. https://doi.org/10.1016/j.optlastec.2016.08.018

A. K. Dubey, V. Yadava. Experimental study of Nd:YAG laser beam machining – an overview. Journal of Materials Processing Technology 195(1):15–26, 2008. https://doi.org/10.1016/j.jmatprotec.2007.05.041

Y. Liao, M. Yu. Effects of laser beam energy and incident angle on the pulse laser welding of stainless steel thin sheet. Journal of Materials Processing Technology 190(1):102–108, 2007. https://doi.org/10.1016/j.jmatprotec.2007.03.102

L. Liu, T. Watanabe, M. Heger, et al. Contributor contact details. In Welding and Joining of Magnesium Alloys, pp. xi–xiii. Woodhead Publishing, 2010. https://doi.org/10.1016/B978-1-84569-692-4.50022-5

A. El-Batahgy, M. Kutsuna. Laser beam welding of AA5052, AA5083, and AA6061 aluminum alloys. Advances in Materials Science and Engineering 2009:974182, 2009. https://doi.org/10.1155/2009/974182

Z. Chen, B. Wang, B. Duan, X. Zhang. Mechanical properties and microstructure of laser welded FeCoNiCrMn high-entropy alloy. Materials Letters 262:127060, 2020. https://doi.org/10.1016/j.matlet.2019.127060

P. Kumar, A. N. Sinha. Effect of pulse width in pulsed Nd:YAG dissimilar laser welding of austenitic stainless steel (304 L) and carbon steel (st37). Lasers in Manufacturing and Materials Processing 5(4):317–334, 2018. https://doi.org/10.1007/s40516-018-0069-z

W. K. Younis, F. A. Kasir. Total efficiency and output power of Nd:YAG laser with spatial interaction efficiency factor. Rafidain Journal of Science 17(3):78–87, 2006. https://doi.org/10.33899/RJS.2006.43412

L. Huang, X. Hua, D. Wu, F. Li. Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel. Journal of Materials Processing Technology 252:421–431, 2018. https://doi.org/10.1016/j.jmatprotec.2017.10.011

V. A. Ventrella, J. R. Berretta, W. de Rossi. Pulsed Nd:YAG laser seam welding of AISI 316L stainless steel thin foils. Journal of Materials Processing Technology 210(14):1838–1843, 2010. https://doi.org/10.1016/j.jmatprotec.2010.06.015

J. Wang, L. Yang, M. Sun, et al. Effect of energy input on the microstructure and properties of butt joints in DP1000 steel laser welding. Materials & Design 90:642–649, 2016. https://doi.org/10.1016/j.matdes.2015.11.006

C. Hitz, J. Ewing, J. Hecht. Introduction to Laser Technology. John Wiley & Sons, Ltd., 2012. ISBN 9780470916209. https://doi.org/10.1002/9781118219492

Y. F. Tzeng. Process characterisation of pulsed Nd:YAG laser seam welding. The International Journal of Advanced Manufacturing Technology 16(1):10–18, 2000. https://doi.org/10.1007/PL00013126

M. J. Torkamany, M. J. Hamedi, F. Malek, J. Sabbaghzadeh. The effect of process parameters on keyhole welding with a 400W Nd:YAG pulsed laser. Journal of Physics D: Applied Physics 39(21):4563, 2006. https://doi.org/10.1088/0022-3727/39/21/009

J. M. William M. Steen. Laser Material Processing. Springer London, London, 4th edn., 2010. ISBN 978-1-84996-061-8. https://doi.org/10.1007/978-1-84996-062-5

J. Goldak, M. Akhlaghi. Computational Welding Mechanics. Springer US, 2005. ISBN 978-0387-23287-4. https://doi.org/10.1007/b101137

T. F. Flint, J. A. Francis, M. C. Smith, J. Balakrishnan. Extension of the double-ellipsoidal heat source model to narrow-groove and keyhole weld configurations. Journal of Materials Processing Technology 246:123–135, 2017. https://doi.org/10.1016/j.jmatprotec.2017.02.002

T. Kik. Heat source models in numerical simulations of laser welding. Materials 13(11):2653, 2020. https://doi.org/10.3390/ma13112653

P. Teixeira, D. Araújo, L. Cunha. Study of the Gaussian distribution heat source model applied to numerical thermal simulations of tig welding processes. Ciencia and Engenharia/Science and Engineering Journal 23:115–122, 2014. https://doi.org/10.14393/19834071.2014.26140

J. Meško, A. Zrak, K. Mulczyk, S. Tofil. Microstructure analysis of welded joints after laser welding. Manufacturing Technology Journal 14(3):355–359, 2014. https://doi.org/10.21062/ujep/x.2014/a/1213-2489/MT/14/3/355

A. Belhadj, J. Bessrour, J.-E. Masse, et al. Finite element simulation of magnesium alloys laser beam welding. Journal of Materials Processing Technology 210(9):1131–1137, 2010. https://doi.org/10.1016/j.jmatprotec.2010.02.023

A.-M. El-Batahgy. Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels. Materials Letters 32(2):155–163, 1997. https://doi.org/10.1016/S0167-577X(97)00023-2

X.-L. Gao, L.-J. Zhang, J. Liu, J.-X. Zhang. A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate. Materials Science and Engineering: A 559:14–21, 2013. https://doi.org/10.1016/j.msea.2012.06.016

L. Zhang, X. Li, Z. Nie, et al. Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al-Zn-Mg-Cu alloy. Materials & Design 92:880–887, 2016. https://doi.org/10.1016/j.matdes.2015.12.117

A. Chamanfar, T. Pasang, A. Ventura, W. Z. Misiolek. Mechanical properties and microstructure of laser welded Ti-6Al-2Sn-4Zr-2Mo (Ti6242) titanium alloy. Materials Science and Engineering: A 663:213–224, 2016. https://doi.org/10.1016/j.msea.2016.02.068

R. Oyyaravelu, P. Kuppan, N. Arivazhagan. Metallurgical and mechanical properties of laser welded high strength low alloy steel. Journal of Advanced Research 7(3):463–472, 2016. https://doi.org/10.1016/j.jare.2016.03.005

G. Silva, M. R. Baldissera, E. d. S. Trichês, K. R. Cardoso. Preparation and characterization of stainless steel 316L/HA biocomposite. Materials Research 16(2):304–309, 2013. https://doi.org/10.1590/S1516-14392012005000182

M. Dadfar, M. H. Fathi, F. Karimzadeh, et al. Effect of TIG welding on corrosion behavior of 316L stainless steel. Materials Letters 61(11):2343–2346, 2007. https://doi.org/10.1016/j.matlet.2006.09.008

J. Wang, Z. Sun, B. Shen, et al. Effects of secondary carbide precipitation and transformation on abrasion resistance of the 16Cr-1Mo-1Cu white iron. Journal of Materials Engineering and Performance 15(3):316–319, 2006. https://doi.org/10.1361/105994906X108602

J. Akré, F. Danoix, H. Leitner, P. Auger. The morphology of secondary-hardening carbides in a martensitic steel at the peak hardness by 3DFIM. Ultramicroscopy 109(5):518–523, 2009. https://doi.org/10.1016/j.ultramic.2008.11.010

D. Sorensen, B. Q. Li, W. W. Gerberich, K. A. Mkhoyan. Investigation of secondary hardening in Co-35Ni-20Cr-10Mo alloy using analytical scanning transmission electron microscopy. Acta Materialia 63:63–72, 2014. https://doi.org/10.1016/j.actamat.2013.10.005

V. I. Murav’ev. Problems of pore formation in welded joints of titanium alloys. Metal Science and Heat Treatment 47(7):282–288, 2005. https://doi.org/10.1007/s11041-005-0068-5

Downloads

Published

2024-05-07

How to Cite

Butt, A. Q., Tayyaba, Q., Raza, M. A., Rehman, A., Khan, T. A., & Shahzad, M. (2024). Parametric optimisation of laser welding of stainless steel 316L. Acta Polytechnica, 64(2), 77–86. https://doi.org/10.14311/AP.2024.64.0077

Issue

Section

Articles