Simulation of wind flow around an alternative flat-roofed fortress tower ruin

Authors

  • Martin Poliak Slovak University of Technology, Faculty of Civil Engineering, Department of Architecture, Radlinského 11, 810 05 Bratislava, Slovak Republic
  • Michal Franek Slovak University of Technology, Faculty of Civil Engineering, Department of Building Construction, Radlinského 11, 810 05 Bratislava, Slovak Republic
  • Jana Gregorová Slovak University of Technology, Faculty of Civil Engineering, Department of Architecture, Radlinského 11, 810 05 Bratislava, Slovak Republic

DOI:

https://doi.org/10.14311/AP.2024.64.0550

Keywords:

ruin protection, wind flow simulation, computational fluid dynamics, ruin coverage

Abstract

An analysis of the effects of alternative flat roof sizes and positions on wind flow around a ruin model is presented. The modelled ruin has almost cube-like proportions, with an open roof plane and a destroyed corner. Roofs over ruins are seen as a means of protection against the wind, which is considered a destructive mechanism. The purpose of the roof as a monumental means of presentation and limits of its implementation are also discussed. Wind flow is illustrated by external pressure and skin friction coefficients. Taking their changes into account, the degree of protection flat roof alternatives provide is estimated and optimal flat roof alternatives are discussed. Simulations were carried out using the 3D Time Steady Reynolds-averaged Navier-Stokes equations and the Shear Stress
Transport k-ω turbulence model.

Downloads

References

O. Makýš. Technológia obnovy budov: Realizácia obnovy kultúrnych pamiatok [In Slovak; Technology of building renovation: Implementation of renovation of cultural monuments]. Spektrum STU, Slovak Republic, 2018. ISBN 978-80-227-4880-3.

C. How. Conservation of Ruins, chap. Stability and survival, pp. 10–43. Butterworth-Heinermann, United Kingdom, 1st edn., 2007. ISBN 978-0-75-066429-5.

E. Sesana, A. S. Gagnon, C. Ciantelli, et al. Climate change impacts on cultural heritage: A literature review. WIREs Climate Change 12(4):e710, 2021. https://doi.org/10.1002/wcc.710

C. Sabbioni, P. Brimblecombe, M. Cassar. The atlas of climate change impact on European cultural heritage: Scientific analysis and management strategies. Anthem Press, United Kingdom, 2010. ISBN 978-92-79-09800-0. https://doi.org/10.2777/11959

M. Shao, L. Li, S. Wang, et al. Deterioration mechanisms of building materials of Jiaohe ruins in China. Journal of Cultural Heritage 14(1):38–44, 2013. https://doi.org/10.1016/j.culher.2012.03.006

E. Vojteková, J. Gregorová, B. Polomová, K. Sásiková. Monument restoration – a controlled task does not limit creativity. World Transactions on Engineering and Technology Education 16(3):269–274, 2018.

J. Gregorová, L. Chovancová, Z. Ondrejková, A. Škrinárová. Obnova torz architektúry ako špecializovaná architektonická disciplína [In Slovak; Restoration of ruins of architecture as a specialized architectural discipline]. Archaeologia historica 40(1):7–39, 2015. https://doi.org/10.5817/AH2015-1-1

B. Bielek, M. Franek, M. Bielek. Aerodynamika a hydrodynamika budov: Fyzikálne problémy účinku vetra a hnaného dažďa na budovy a konštrukcie [In Slovak; Aerodynamics and hydrodynamics of building: Physics issues of wind effect and wind-driven rain on buildings and constructions]. Spektrum STU, Slovak Republic, 2020. ISBN 978-80-227-5051-6.

J. Singh, A. K. Roy. Effects of roof slope and wind direction on wind pressure distribution on the roof of a square plan pyramidal low-rise building using CFD simulation. International Journal of Advanced Structural Engineering 11(2):231–254, 2019. https://doi.org/10.1007/s40091-019-0227-3

N. S. Fouad, G. H. Mahmoud, N. E. Nasr. Comparative study of international codes wind loads and CFD results for low rise buildings. Alexandria Engineering Journal 57(4):3623–3639, 2018. https://doi.org/10.1016/j.aej.2017.11.023

B. Mou, B.-J. He, D.-X. Zhao, K.-W. Chau. Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Engineering Applications of Computational Fluid Mechanics 11(1):293–309, 2017. https://doi.org/10.1080/19942060.2017.1281845

C. Cabello-Briones, S. Mayorga-Pinilla, D. Vázquez-Moliní. Particulate dry deposition on sheltered archaeological remains: Considerations based on Complutum, a Roman site in Spain. Journal of Cultural Heritage 46:218–225, 2020. https://doi.org/10.1016/j.culher.2020.07.005

G. Carbonara. Protective shelters for archaeological sites: Proceedings of a symposium. Conservation and Management of Archaeological Sites 21(4):282–291, 2019. https://doi.org/10.1080/13505033.2020.1794593

F. J. Soria, L. F. Guerrero, A. B. García. Protective roof systems for archeological sites in Mexico. In WIT Transactions on the Built Environment, vol. 171, pp. 225–236. WITPress, 2017. https://doi.org/10.2495/STR170201

F. Y. Çetin, B. Ipekoğlu. Impact of transparency in the design of protective structures for conservation of archaeological remains. Journal of Cultural Heritage 14(3):e21–e24, 2013. https://doi.org/10.1016/j.culher.2012.10.019

P. Pineda, A. Iranzo. Analysis of sand-loaded air flow erosion in heritage sites by computational fluid dynamics: Method and damage prediction. Journal of Cultural Heritage 25:75–86, 2017. https://doi.org/10.1016/j.culher.2016.12.005

A. S. Hussein, H. El-Shishiny. Wind flow modeling and simulation over the Giza plateau cultural heritage site in Egypt. Journal on Computing and Cultural Heritage 2(2):6, 2009. https://doi.org/10.1145/1613672.1613674

M. Vecco. Genius loci as a meta-concept. Journal of Cultural Heritage 41:225–231, 2020. https://doi.org/10.1016/j.culher.2019.07.001

M. Antrop. Sustainable landscapes: Contradiction, fiction or utopia? Landscape and Urban Planning 75(3–4):187–197, 2006. https://doi.org/10.1016/j.landurbplan.2005.02.014

L. D’Acci. A new type of cities for liveable futures: Isobenefit urbanism morphogenesis. Journal of Environmental Management 246:128–140, 2019. https://doi.org/10.1016/j.jenvman.2019.05.129

Z. Nádaská, P. Pilař. Conceptual solution for the revitalization of public spaces in Slovak towns: Case study Stupava. In 9. Architektura v perspektivě, pp. 177–180. Vysoká škola báňská – Technická univerzita Ostrava, Czech Republic, 2017. ISBN 978-80-248-4058-1.

R. Ruhig. Konzervácia historických prvkov aplikáciou zimných záhrad na fasáde bytového domu v Madride [In Slovak; Preservation of historic elements by application winter gardens on the facade of a residential building in Madrid]. In 9. Architektura v perspektivě, pp. 254–255. Vysoká škola báňská – Technická univerzita Ostrava, Czech Republic, 2017. ISBN 978-80-248-4058-1.

F. Bránický, J. Gregorová. Hľadanie stratenej identity oravského vidieka [In Slovak; Searching for lost identity of Orava countryside]. In 14. Architektura v perspektivě, pp. 84–89. Vysoká škola báňská – Technická univerzita Ostrava, Czech Republic, 2022.

J. Gregorová, E. Vojteková. Príprava komplexnej obnovy NKP mestského opevnenia v Trnave: Pilotný projekt katedry UNESCO pre obnovu architektonického dedičstva na STU v Bratislave (1. etapa) [In Slovak; Preparation of complex renovation of national cultural monument of the fortification of the town Trnava: Pilot project of the UNESCO chair for preservation of architectural heritage at Slovak university of technology in Bratislava (1st phase)], 2022. [2023-03-05]. https://www.archinfo.sk/diskusia/blog/diela/priprava-komplexnej-obnovy-nkp-mestskehoopevnenia-v-trnave-pilotny-projekt-katedryunesco-pre-obnovu-architektonickeho-dedicstvana-stu-v-bratislave-1-etapa.html

M. Poliak. Climatic exposure of Slovak ruins. In Advances in Architectural, Civil and Environmental Engineering, pp. 382–387. Spektrum STU, Slovak Republic, 2021. ISBN 978-80-227-5150-6.

M. Poliak. Analýza geometrie styku ruiny so zastrešením [In Slovak; Geometry analysis of ruincoverage contact]. In Advances in Architectural, Civil and Environmental Engineering, pp. 365–372. Spektrum STU, Slovak Republic, 2022. ISBN 97-80-227-5251-0.

M. Poliak, J. Gregorová. Dopad zastrešenia ruiny na metodiku jej prezentácie vo vzťahu k exponovanosti [In Slovak; Impact of ruin coverage on presentation of the ruin in relation to exposition]. In 14. Architektura v perspektivě, pp. 179–183. Vysoká škola báňská – Technická univerzita Ostrava, Czech Republic, 2022. ISBN 978-80-248-4646-0.

J. Franke, A. Baklanov. Best practice guideline for the CFD simulation of flows in the urban environment: COST action 732 quality assurance and improvement of microscale meteorological models. COST Office, 2007.

M. Poliak, M. Franek, J. Gregorová. Evaluation of a measurement turbulence model of the wind pressure on the ruin of a fortified tower. Slovak Journal of Civil Engineering 31(2):25–36, 2023. https://doi.org/10.2478/sjce-2023-0010

CFD Online. Skin friction coefficient. [2023-04-15]. https://www.cfdonline.com/Wiki/Skin_friction_coefficient

Downloads

Published

2025-01-07

Issue

Section

Articles

How to Cite

Poliak, M., Franek, M. ., & Gregorová, J. . (2025). Simulation of wind flow around an alternative flat-roofed fortress tower ruin. Acta Polytechnica, 64(6), 550-570. https://doi.org/10.14311/AP.2024.64.0550