Functional Determinants for Radially Separable Partial Differential Operators

G. V. Dunne


Functional determinants of differential operators play a prominent role in many fields of theoretical and mathematical physics, ranging from condensed matter physics, to atomic, molecular and particle physics. They are, however, difficult to compute reliably in non-trivial cases. In one dimensional problems (i.e. functional determinants of ordinary differential operators), a classic result of Gel’fand and Yaglom greatly simplifies the computation of functional determinants. Here I report some recent progress in extending this approach to higher dimensions (i.e., functional determinants of partial differential operators), with applications in quantum field theory. 


quantum field theory; functional determinants; zeta functions; spectral theory; partial differential operators

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague