Application of an artificial intelligence segmentation for deep hyperthermia treatment planning in the pelvic region

Authors

  • Tomas Drizdal Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Technology, nám. Sítná 3105, 272 01 Kladno, Czech Republic
  • Marek Novak Czech Technical University in Prague, Faculty of Biomedical Engineering, Department of Biomedical Technology, nám. Sítná 3105, 272 01 Kladno, Czech Republic

DOI:

https://doi.org/10.14311/AP.2023.63.0383

Keywords:

hyperthermia, specific absorption rate, phased array applicator, hyperthermia treatment planning

Abstract

During a microwave hyperthermia oncology treatment, the target region temperature is elevated to the temperatures of 40–44 °C, which improves the therapeutic effect of a standard radiotherapy and/or chemotherapy treatments. Amplitudes and phases of antenna input signals in the phased array setup surrounding the 3D patient model are optimised with respect to maximise the energy deposition in the target region. In this study, we successfully integrated an automatic artificial intelligence segmentation routine, used for patient-specific 3D model generation, into the hyperthermia treatment planning process. This allows us to apply more realistic patient 3D model for the online hyperthermia guidance including detailed retrospective analyses of the overall treatment quality, possibly leading to a widespread clinical use of the hyperthermia treatment planning.

Downloads

Download data is not yet available.

References

N. R. Datta, D. Marder, S. Datta, et al. Quantification of thermal dose in moderate clinical hyperthermia with radiotherapy: a relook using temperature-time area under the curve (AUC). International Journal of Hyperthermia 38(1):296–307, 2021. https://doi.org/10.1080/02656736.2021.1875060

H. Peeters, E. M. van Zwol, L. Brancato, et al. Systematic review of the registered clinical trials for oncological hyperthermia treatment. International Journal of Hyperthermia 39(1):806–812, 2022. https://doi.org/10.1080/02656736.2022.2076292

J. L. Guevelou, M. E. Chirila, V. Achard, et al. Combined hyperthermia and radiotherapy for prostate cancer: a systematic review. International Journal of Hyperthermia 39(1):547–556, 2022. https://doi.org/10.1080/02656736.2022.2053212

O. Fiser, I. Merunka, J. Vrba. Waveguide applicator system for head and neck hyperthermia treatment. Journal of Electrical Engineering and Technology 11(6):1744–1753, 2016. https://doi.org/10.5370/JEET.2016.11.6.1744

H. P. Kok, E. N. K. Cressman, W. Ceelen, et al. Heating technology for malignant tumors: a review. International Journal of Hyperthermia 37(1):711–741, 2020. https://doi.org/10.1080/02656736.2020.1779357

Z. Rijnen, J. F. Bakker, R. A. M. Canters, et al. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. International Journal of Hyperthermia 29(3):181–193, 2013. https://doi.org/10.3109/02656736.2013.783934

D. Baskaran, K. Arunachalam. Implementation of thinned array synthesis in hyperthermia treatment planning of 434 MHz phased array breast applicator using genetic algorithm. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 7(1):32–38, 2023. https://doi.org/10.1109/JERM.2022.3224294

H. P. Kok, J. van der Zee, F. N. Guirado, et al. Treatment planning facilitates clinical decision making for hyperthermia treatments. International Journal of Hyperthermia 38(1):532–551, 2021. https://doi.org/10.1080/02656736.2021.1903583

H. P. Kok, J. Crezee. Hyperthermia treatment planning: Clinical application and ongoing developments. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 5(3):214–222, 2021. https://doi.org/10.1109/JERM.2020.3032838

M. Franckena, R. Canters, F. Termorshuizen, et al. Clinical implementation of hyperthermia treatment planning guided steering: A cross over trial to assess its current contribution to treatment quality. International Journal of Hyperthermia 26(2):145–157, 2010. https://doi.org/10.3109/02656730903453538

H. P. Kok, J. Crezee. Adapt2Heat: treatment planning-assisted locoregional hyperthermia by on-line visualization, optimization and re-optimization of SAR and temperature distributions. International Journal of Hyperthermia 39(1):265–277, 2022. https://doi.org/10.1080/02656736.2022.2032845

M. M. Paulides, G. M. Verduijn, N. Van Holthe. Status quo and directions in deep head and neck hyperthermia. Radiation Oncology 11(1):21, 2016. https://doi.org/10.1186/s13014-016-0588-8

R. Gaffoglio, M. Righero, G. Giordanengo, et al. Fast optimization of temperature focusing in hyperthermia treatment of sub-superficial tumors. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 5(3):286–293, 2021. https://doi.org/10.1109/JERM.2020.3043383

T. Drizdal, K. Sumser, G. G. Bellizzi, et al. Simulation guided design of the MRcollar: a MR compatible applicator for deep heating in the head and neck region. International Journal of Hyperthermia 38(1):382–392, 2021. https://doi.org/10.1080/02656736.2021.1892836

I. VilasBoas-Ribeiro, G. C. van Rhoon, T. Drizdal, et al. Impact of number of segmented tissues on SAR prediction accuracy in deep pelvic hyperthermia treatment planning. Cancers 12(9):2646, 2020. https://doi.org/10.3390/cancers12092646

R. F. Verhaart, V. Fortunati, G. M. Verduijn, et al. CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation. Radiotherapy and Oncology 111(1):158–163, 2014. https://doi.org/10.1016/j.radonc.2014.01.027

V. Fortunati, R. F. Verhaart, W. J. Niessen, et al. Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning. Physics in medicine and biology 60(16):6547, 2015. https://doi.org/10.1088/0031-9155/60/16/6547

J. Wasserthal, H.-C. Breit, M. T. Meyer, et al. TotalSegmentator: Robust segmentation of 104 anatomic structures in CT images. Radiology: Artificial Intelligence 5(5):e230024, 2023. https://doi.org/10.1148/ryai.230024

K. Clark, B. Vendt, K. Smith, et al. The cancer imaging archive (TCIA): Maintaining and operating a public information repository. Journal of Digital Imaging 26(6):1045–1057, 2013. https://doi.org/10.1007/s10278-013-9622-7

N. Mayr, W. T. Yuh, S. Bowen, et al. Cervical cancer – tumor heterogeneity: Serial functional and molecular imaging across the radiation therapy course in advanced cervical cancer (CC-tumor-heterogeneity), 2023. [2023-02-14]. https://doi.org/10.7937/ERZ5-QZ59

A. Fedorov, R. Beichel, J. Kalpathy-Cramer, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging 30(9):1323–1341, 2012. Quantitative Imaging in Cancer. https://doi.org/https://doi.org/10.1016/j.mri.2012.05.001

A. van der Horst, H. P. Kok, J. Crezee. Effect of gastrointestinal gas on the temperature distribution in pancreatic cancer hyperthermia treatment planning. International Journal of Hyperthermia 38(1):229–240, 2021. https://doi.org/10.1080/02656736.2021.1882709

A. Christ, W. Kainz, E. G. Hahn, et al. The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations. Physics in Medicine and Biology 55(2):N23, 2010. https://doi.org/10.1088/0031-9155/55/2/N01

S. Gabriel, R. W. Lau, C. Gabriel. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology 41(11):2271–2293, 1996. https://doi.org/10.1088/0031-9155/41/11/003

P. Hasgall, F. D. Gennaro, C. Baumgartner, et al. ITIS database for thermal and electromagnetic parameters of biological tissues, 2018. [2022-02-23]. https://doi.org/10.13099/VIP21000-04-0

R. A. M. Canters, P. Wust, J. F. Bakker, G. C. V. Rhoon. A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation. International Journal of Hyperthermia 25(7):593–608, 2009. https://doi.org/10.3109/02656730903110539

G. G. Bellizzi, K. Sumser, I. VilasBoas-Ribeiro, et al. Standardization of patient modeling in hyperthermia simulation studies: introducing the Erasmus Virtual Patient Repository. International Journal of Hyperthermia 37(1):608–616, 2020. https://doi.org/10.1080/02656736.2020.1772996

I. VilasBoas-Ribeiro, S. A. N. Nouwens, S. Curto, et al. POD-Kalman filtering for improving noninvasive 3D temperature monitoring in MR-guided hyperthermia. Medical Physics 49(8):4955–4970, 2022. https://doi.org/10.1002/mp.15811

H. P. Kok, G. C. van Rhoon, T. D. Herrera, et al. Biological modeling in thermoradiotherapy: present status and ongoing developments toward routine clinical use. International Journal of Hyperthermia 39(1):1126–1140, 2022. https://doi.org/10.1080/02656736.2022.2113826

H. P. Kok, J. Crezee. Validation and practical use of Plan2Heat hyperthermia treatment planning for capacitive heating. International Journal of Hyperthermia 39(1):952–966, 2022. https://doi.org/10.1080/02656736.2022.2093996

D. Vrba, J. Vrba. Novel applicators for local microwave hyperthermia based on zeroth-order mode resonator metamaterial. International Journal of Antennas and Propagation 2014:631398, 2014. https://doi.org/10.1155/2014/631398

D. Vrba, J. Vrba, D. B. Rodrigues, P. Stauffer. Numerical investigation of novel microwave applicators based on zero-order mode resonance for hyperthermia treatment of cancer. Journal of the Franklin Institute 354(18):8734–8746, 2017. https://doi.org/10.1016/j.jfranklin.2016.10.044

D. Baskaran, K. Arunachalam. Design and experimental verification of 434MHz phased array applicator for hyperthermia treatment of locally advanced breast cancer. IEEE Transactions on Antennas and Propagation 69(3):1706–1715, 2021. https://doi.org/10.1109/TAP.2020.3016462

T. Drizdal, M. M. Paulides, K. Sumser, et al. Application of photogrammetry reconstruction for hyperthermia quality control measurements. Physica Medica 101:87–94, 2022. https://doi.org/10.1016/j.ejmp.2022.08.008

T. Pokorny, D. Vrba, J. Tesarik, et al. Anatomically and dielectrically realistic 2.5D 5-layer reconfigurable head phantom for testing microwave stroke detection and classification. International Journal of Antennas and Propagation 2019:5459391, 2019. https://doi.org/10.1155/2019/5459391

O. Fiser, S. Ley, M. Helbig, et al. Temperature dependent dielectric spectroscopy of muscle tissue phantom. International Journal of Microwave and Wireless Technologies 12(9):885–891, 2020. https://doi.org/10.1017/S1759078720000203

E. Balidemaj, H. P. Kok, G. Schooneveldt, et al. Hyperthermia treatment planning for cervical cancer patients based on electrical conductivity tissue properties acquired in vivo with EPT at 3 T MRI. International Journal of Hyperthermia 32(5):558–568, 2016. https://doi.org/10.3109/02656736.2015.1129440

S. Gavazzi, C. A. T. van den Berg, A. Sbrizzi, et al. Accuracy and precision of electrical permittivity mapping at 3T: the impact of three , mapping techniques. Magnetic Resonance in Medicine 81(6):3628–3642, 2019. https://doi.org/10.1002/mrm.27675

I. VilasBoas-Ribeiro, S. Curto, G. C. van Rhoon, et al. MR thermometry accuracy and prospective imaging-based patient selection in MR-guided hyperthermia treatment for locally advanced cervical cancer. Cancers 13(14):3503, 2021. https://doi.org/10.3390/cancers13143503

T. V. Feddersen, D. H. J. Poot, M. M. Paulides, et al. Multi-echo gradient echo pulse sequences: which is best for PRFS MR thermometry guided hyperthermia? International Journal of Hyperthermia 40(1):2184399, 2023. https://doi.org/10.1080/02656736.2023.2184399

R. Poni, E. Neufeld, M. Capstick, et al. Feasibility of temperature control by electrical impedance tomography in hyperthermia. Cancers 13(13):3297, 2021. https://doi.org/10.3390/cancers13133297

O. Fiser, M. Helbig, J. Sachs, et al. Microwave non-invasive temperature monitoring using UWB radar for cancer treatment by hyperthermia. PIER 162:1–14, 2018. https://doi.org/10.2528/pier17111609

Downloads

Published

2023-12-31

How to Cite

Drizdal, T., & Novak, M. (2023). Application of an artificial intelligence segmentation for deep hyperthermia treatment planning in the pelvic region. Acta Polytechnica, 63(6), 383–389. https://doi.org/10.14311/AP.2023.63.0383

Issue

Section

Articles