Effect of the Hydraulic Characteristics of a Stream Channel and its Surroundings on the Runoff Hydrograph

V. Matoušek


The course and magnitude of a rainfall flood depends primarily on the intensity and duration of the rainfall event, on the morphological parameters of the watershed (e.g. its slope and shape), and on how to watershed has been exploited. A flood wave develops in the stream channel that drains the watershed, and it transforms while passing along the channel. This is particularly the case if the water spreads into floodplains and/or storage reservoirs while passing through the channel. This paper addresses an additional effect that has a significant influence on the magnitude and course of the flood wave but has not previously been addressed adequately, namely the effect of the hydraulic parameters of the stream channel itself on the transformation of a flood wave. The paper explains theoretically and shows on a practical example that a smooth channel with a high capacity significantly increases the magnitude and speed of a flood wave.Many flood events are unnecessarily severe just because the watershed is drained by a hydraulically inappropriate channel. The channel is large and smooth and therefore it gathers most of the flowing water during the flood event, producing high water velocity in the channel. As a result, the large and smooth channel accelerates the runoff from the watershed and constrains the spread of water into the floodplain. A high and steep flood wave is developed in the channel, and this floods areas with a limited water-throughput capacity (e.g. urban areas in the vicinity of hydraulic structures) downstream the channel. This paper offers a methodology for evaluating the ability of a channel to convey a flood wave safely and for recognizing whether a regulated channel should be subjected to restoration due to its inability to convey flood waves safely. 


rainfall-runoff process; runoff velocity; flood-wave transformation; flood damping; stream channel restoration

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague